Ad
related to: chord formula math
Search results
Results From The WOW.Com Content Network
Equal chords are subtended by equal angles from the center of the circle. A chord that passes through the center of a circle is called a diameter and is the longest chord of that specific circle. If the line extensions (secant lines) of chords AB and CD intersect at a point P, then their lengths satisfy AP·PB = CP·PD (power of a point theorem).
In Euclidean geometry, the intersecting chords theorem, or just the chord theorem, is a statement that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal.
When the arc reaches 60°, the chord length is exactly equal to the number of degrees in the arc, i.e. chord 60° = 60. For arcs of more than 60°, the chord is less than the arc, until an arc of 180° is reached, when the chord is only 120. The fractional parts of chord lengths were expressed in sexagesimal (base 60) numerals. For example ...
A circular segment (in green) is enclosed between a secant/chord (the dashed line) and the arc whose endpoints equal the chord's (the arc shown above the green area). In geometry, a circular segment or disk segment (symbol: ⌓) is a region of a disk [1] which is "cut off" from the rest of the disk by a straight line.
A chord is the line segment that joins two distinct points of a circle. A chord is therefore contained in a unique secant line and each secant line determines a unique chord. In rigorous modern treatments of plane geometry, results that seem obvious and were assumed (without statement) by Euclid in his treatment, are usually proved.
In mathematical analysis, the universal chord theorem states that if a function f is continuous on [a,b] and satisfies () = ...
The term chord function may refer to: Diatonic function – in music, the role of a chord in relation to a diatonic key; In mathematics, the length of a chord of a circle as a trigonometric function of the length of the corresponding arc; see in particular Ptolemy's table of chords .
A formal proof of the theorem is as follows: Let the perpendiculars XX′ and XX″ be dropped from the point X on the straight lines AM and DM respectively. Similarly, let YY′ and YY″ be dropped from the point Y perpendicular to the straight lines BM and CM respectively.