When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Vincenty's formulae - Wikipedia

    en.wikipedia.org/wiki/Vincenty's_formulae

    Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...

  3. Geographical distance - Wikipedia

    en.wikipedia.org/wiki/Geographical_distance

    Geodesic on an oblate ellipsoid. An ellipsoid approximates the surface of the Earth much better than a sphere or a flat surface does. The shortest distance along the surface of an ellipsoid between two points on the surface is along the geodesic. Geodesics follow more complicated paths than great circles and in particular, they usually don't ...

  4. Geodesic - Wikipedia

    en.wikipedia.org/wiki/Geodesic

    In the original sense, a geodesic was the shortest route between two points on the Earth's surface. For a spherical Earth , it is a segment of a great circle (see also great-circle distance ). The term has since been generalized to more abstract mathematical spaces; for example, in graph theory , one might consider a geodesic between two ...

  5. Great-circle distance - Wikipedia

    en.wikipedia.org/wiki/Great-circle_distance

    A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...

  6. Solving the geodesic equations - Wikipedia

    en.wikipedia.org/wiki/Solving_the_geodesic_equations

    Solving the geodesic equations is a procedure used in mathematics, particularly Riemannian geometry, and in physics, particularly in general relativity, that results in obtaining geodesics. Physically, these represent the paths of (usually ideal) particles with no proper acceleration , their motion satisfying the geodesic equations.

  7. Distance (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Distance_(graph_theory)

    A metric space defined over a set of points in terms of distances in a graph defined over the set is called a graph metric. The vertex set (of an undirected graph) and the distance function form a metric space, if and only if the graph is connected. The eccentricity ϵ(v) of a vertex v is the greatest distance between v and any other vertex; in ...

  8. Earth section paths - Wikipedia

    en.wikipedia.org/wiki/Earth_section_paths

    The shortest path between two points on a spheroid is known as a geodesic. Such paths are developed using differential geometry. The equator and meridians are great ellipses that are also geodesics [a]. The maximum difference in length between a great ellipse and the corresponding geodesic of length 5,000 nautical miles is about 10.5 meters.

  9. Geodetic coordinates - Wikipedia

    en.wikipedia.org/wiki/Geodetic_coordinates

    Geodetic latitude and geocentric latitude have different definitions. Geodetic latitude is defined as the angle between the equatorial plane and the surface normal at a point on the ellipsoid, whereas geocentric latitude is defined as the angle between the equatorial plane and a radial line connecting the centre of the ellipsoid to a point on the surface (see figure).