When.com Web Search

  1. Ads

    related to: identity property of multiplication examples

Search results

  1. Results From The WOW.Com Content Network
  2. Multiplication - Wikipedia

    en.wikipedia.org/wiki/Multiplication

    Identity element The multiplicative identity is 1; anything multiplied by 1 is itself. This feature of 1 is known as the identity property: [27] [28] =. Property of 0 Any number multiplied by 0 is 0. This is known as the zero property of multiplication: [27] = Negation −1 times any number is equal to the additive inverse of that number:

  3. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    Logarithms can be used to make calculations easier. For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d.

  4. Identity element - Wikipedia

    en.wikipedia.org/wiki/Identity_element

    [1] [2] For example, 0 is an identity element of the addition of real numbers. This concept is used in algebraic structures such as groups and rings . The term identity element is often shortened to identity (as in the case of additive identity and multiplicative identity) [ 3 ] when there is no possibility of confusion, but the identity ...

  5. Identity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Identity_(mathematics)

    Visual proof of the Pythagorean identity: for any angle , the point (,) = (⁡, ⁡) lies on the unit circle, which satisfies the equation + =.Thus, ⁡ + ⁡ =. In mathematics, an identity is an equality relating one mathematical expression A to another mathematical expression B, such that A and B (which might contain some variables) produce the same value for all values of the variables ...

  6. Commutative property - Wikipedia

    en.wikipedia.org/wiki/Commutative_property

    The Egyptians used the commutative property of multiplication to simplify computing products. [7] [8] Euclid is known to have assumed the commutative property of multiplication in his book Elements. [9] Formal uses of the commutative property arose in the late 18th and early 19th centuries, when mathematicians began to work on a theory of ...

  7. Associative algebra - Wikipedia

    en.wikipedia.org/wiki/Associative_algebra

    For example, the associativity can be expressed as follows. By the universal property of a tensor product of modules, the multiplication (the R-bilinear map) corresponds to a unique R-linear map :. The associativity then refers to the identity: