Ads
related to: equivalent resistor calculatorpasternack.com has been visited by 10K+ users in the past month
Search results
Results From The WOW.Com Content Network
Capacitors and inductors as used in electric circuits are not ideal components with only capacitance or inductance.However, they can be treated, to a very good degree of approximation, as being ideal capacitors and inductors in series with a resistance; this resistance is defined as the equivalent series resistance (ESR) [1].
Figure 4. These circuits are equivalent: (A) A resistor at nonzero temperature with internal thermal noise; (B) Its Thévenin equivalent circuit: a noiseless resistor in series with a noise voltage source; (C) Its Norton equivalent circuit: a noiseless resistance in parallel with a noise current source.
As originally stated in terms of direct-current resistive circuits only, Thévenin's theorem states that "Any linear electrical network containing only voltage sources, current sources and resistances can be replaced at terminals A–B by an equivalent combination of a voltage source V th in a series connection with a resistance R th."
At a pair of terminals of the network, it can be replaced by a current source and a single resistor in parallel. For alternating current (AC) systems the theorem can be applied to reactive impedances as well as resistances. The Norton equivalent circuit is used to represent any network of linear sources and impedances at a given frequency.
Source transformations are easy to compute using Ohm's law.If there is a voltage source in series with an impedance, it is possible to find the value of the equivalent current source in parallel with the impedance by dividing the value of the voltage source by the value of the impedance.
The number of equivalent circuits that a linear network can be transformed into is unbounded. Even in the most trivial cases this can be seen to be true, for instance, by asking how many different combinations of resistors in parallel are equivalent to a given combined resistor.
Miller theorem helps reduce the complexity in some circuits particularly with feedback [2] by converting them to simpler equivalent circuits. But Miller theorem is not only an effective tool for creating equivalent circuits; it is also a powerful tool for designing and understanding circuits based on modifying impedance by additional voltage ...
The star-to-delta and series-resistor transformations are special cases of the general resistor network node elimination algorithm. Any node connected by N resistors (R 1 … R N) to nodes 1 … N can be replaced by () resistors interconnecting the remaining N nodes. The resistance between any two nodes x, y is given by: