Search results
Results From The WOW.Com Content Network
Its authors have divided Elementary Number Theory, Group Theory and Ramanujan Graphs into four chapters. The first of these provides background in graph theory, including material on the girth of graphs (the length of the shortest cycle), on graph coloring, and on the use of the probabilistic method to prove the existence of graphs for which both the girth and the number of colors needed are ...
Print/export Download as PDF; Printable version; ... Elementary number theory includes topics of number theory commonly taught at the primary and secondary school ...
James Victor Uspensky (Russian: Яков Викторович Успенский, romanized: Yakov Viktorovich Uspensky; April 29, 1883 – January 27, 1947) was a Russian and American mathematician notable for writing Theory of Equations.
An elementary number is one formalization of the concept of a closed-form number. The elementary numbers form an algebraically closed field containing the roots of arbitrary expressions using field operations, exponentiation, and logarithms. The set of the elementary numbers is subdivided into the explicit elementary numbers and the implicit ...
The Penguin Dictionary of Curious and Interesting Numbers is a reference book for recreational mathematics and elementary number theory written by David Wells. The first edition was published in paperback by Penguin Books in 1986 in the UK, and a revised edition appeared in 1997 ( ISBN 0-14-026149-4 ).
Retrieved from "https://en.wikipedia.org/w/index.php?title=Elementary_number_theory&oldid=1216725872"https://en.wikipedia.org/w/index.php?title=Elementary_number_theory
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The document is a successful collection of definitions, postulates (axioms), propositions (theorems and constructions), and mathematical proofs of the propositions, and covers topics such as Euclidean geometry, geometric algebra, elementary number theory, and the ancient Greek version of algebraic systems.