When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Quartile - Wikipedia

    en.wikipedia.org/wiki/Quartile

    In statistics, quartiles are a type of quantiles which divide the number of data points into four parts, or quarters, of more-or-less equal size. The data must be ordered from smallest to largest to compute quartiles; as such, quartiles are a form of order statistic. The three quartiles, resulting in four data divisions, are as follows:

  3. Grouped data - Wikipedia

    en.wikipedia.org/wiki/Grouped_data

    In this formula, x refers to the midpoint of the class intervals, and f is the class frequency. Note that the result of this will be different from the sample mean of the ungrouped data. The mean for the grouped data in the above example, can be calculated as follows:

  4. Quantile - Wikipedia

    en.wikipedia.org/wiki/Quantile

    The third quartile value for the original example above is determined by 11×(3/4) = 8.25, which rounds up to 9. The ninth value in the population is 15. 15 Fourth quartile Although not universally accepted, one can also speak of the fourth quartile. This is the maximum value of the set, so the fourth quartile in this example would be 20.

  5. Interquartile range - Wikipedia

    en.wikipedia.org/wiki/Interquartile_range

    It is defined as the difference between the 75th and 25th percentiles of the data. [2] [3] [4] To calculate the IQR, the data set is divided into quartiles, or four rank-ordered even parts via linear interpolation. [1] These quartiles are denoted by Q 1 (also called the lower quartile), Q 2 (the median), and Q 3 (also called the

  6. Quartile coefficient of dispersion - Wikipedia

    en.wikipedia.org/wiki/Quartile_coefficient_of...

    The statistic is easily computed using the first and third quartiles, Q 1 and Q 3, respectively) for each data set. The quartile coefficient of dispersion is the ratio of half of the interquartile range (IQR) to the average of the quartiles (the midhinge): [1] = + = +.

  7. Five-number summary - Wikipedia

    en.wikipedia.org/wiki/Five-number_summary

    Splitting the observations either side of the median gives two groups of four observations. The median of the first group is the lower or first quartile, and is equal to (0 + 1)/2 = 0.5. The median of the second group is the upper or third quartile, and is equal to (27 + 61)/2 = 44. The smallest and largest observations are 0 and 63.

  8. Box plot - Wikipedia

    en.wikipedia.org/wiki/Box_plot

    In this example, only the first and the last number are changed. The median, third quartile, and first quartile remain the same. In this case, the maximum value in this data set is 89°F, and 1.5 IQR above the third quartile is 88.5°F. The maximum is greater than 1.5 IQR plus the third quartile, so the maximum is an outlier.

  9. Statistical dispersion - Wikipedia

    en.wikipedia.org/wiki/Statistical_dispersion

    A measure of statistical dispersion is a nonnegative real number that is zero if all the data are the same and increases as the data become more diverse. Most measures of dispersion have the same units as the quantity being measured. In other words, if the measurements are in metres or seconds, so is the measure of dispersion.