Search results
Results From The WOW.Com Content Network
The cross product with respect to a right-handed coordinate system. In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol .
There are two lists of mathematical identities related to vectors: Vector algebra relations — regarding operations on individual vectors such as dot product, cross product, etc. Vector calculus identities — regarding operations on vector fields such as divergence, gradient, curl, etc.
The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.
If geometric algebra is used the cross product b × c of vectors is expressed as their exterior product b∧c, a bivector. The second cross product cannot be expressed as an exterior product, otherwise the scalar triple product would result. Instead a left contraction [6] can be used, so the formula becomes [7]
Vector product, or cross product, an operation on two vectors in a three-dimensional Euclidean space, producing a third three-dimensional Euclidean vector perpendicular to the original two Vector projection , also known as vector resolute or vector component , a linear mapping producing a vector parallel to a second vector
In Euclidean 3-space, the wedge product has the same magnitude as the cross product (the area of the parallelogram formed by sides and ) but generalizes to arbitrary affine spaces and products between more than two vectors. Tensor product – for two vectors and , where and are vector spaces, their tensor product belongs to the tensor product ...
The dot product takes in two vectors and returns a scalar, while the cross product [a] returns a pseudovector. Both of these have various significant geometric interpretations and are widely used in mathematics, physics, and engineering. The dyadic product takes in two vectors and returns a second order tensor called a dyadic in this context. A ...
The exterior product of two vectors can be identified with the signed area enclosed by a parallelogram the sides of which are the vectors. The cross product of two vectors in dimensions with positive-definite quadratic form is closely related to their exterior product.