Search results
Results From The WOW.Com Content Network
The cross product with respect to a right-handed coordinate system. In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol .
The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.
The vector triple product is defined as the cross product of one vector with the cross product of the other two. The following relationship holds: The following relationship holds: a × ( b × c ) = ( a ⋅ c ) b − ( a ⋅ b ) c {\displaystyle \mathbf {a} \times (\mathbf {b} \times \mathbf {c} )=(\mathbf {a} \cdot \mathbf {c} )\mathbf {b ...
Vector algebra relations — regarding operations on individual vectors such as dot product, cross product, etc. Vector calculus identities — regarding operations on vector fields such as divergence, gradient, curl, etc.
In mathematics and physics, the right-hand rule is a convention and a mnemonic, utilized to define the orientation of axes in three-dimensional space and to determine the direction of the cross product of two vectors, as well as to establish the direction of the force on a current-carrying conductor in a magnetic field.
Cross product – also known as the "vector product", a binary operation on two vectors that results in another vector. The cross product of two vectors in 3-space is defined as the vector perpendicular to the plane determined by the two vectors whose magnitude is the product of the magnitudes of the two vectors and the sine of the angle ...
The vector, and so the cross product, comes from the contraction of this bivector with a trivector. In three dimensions, up to a scale factor there is only one trivector, the pseudoscalar of the space, and a product of the above bivector and one of the two unit trivectors gives the vector result, the dual of the bivector.
The vector cross product, used to define the axis–angle representation, does confer an orientation ("handedness") to space: in a three-dimensional vector space, the three vectors in the equation a × b = c will always form a right-handed set (or a left-handed set, depending on how the cross product is defined), thus fixing an orientation in ...