When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    Hyperbola: directrix property Hyperbola: definition with directrix property The two lines at distance d = a 2 c {\textstyle d={\frac {a^{2}}{c}}} from the center and parallel to the minor axis are called directrices of the hyperbola (see diagram).

  3. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    In addition to the eccentricity (e), foci, and directrix, various geometric features and lengths are associated with a conic section. The principal axis is the line joining the foci of an ellipse or hyperbola, and its midpoint is the curve's center. A parabola has no center. The linear eccentricity (c) is the distance between the center and a ...

  4. Director circle - Wikipedia

    en.wikipedia.org/wiki/Director_circle

    More generally, for any collection of points P i, weights w i, and constant C, one can define a circle as the locus of points X such that (,) =.. The director circle of an ellipse is a special case of this more general construction with two points P 1 and P 2 at the foci of the ellipse, weights w 1 = w 2 = 1, and C equal to the square of the major axis of the ellipse.

  5. Kiepert conics - Wikipedia

    en.wikipedia.org/wiki/Kiepert_conics

    It has been proved that the Kiepert hyperbola is the hyperbola passing through the vertices, the centroid and the orthocenter of the reference triangle and the Kiepert parabola is the parabola inscribed in the reference triangle having the Euler line as directrix and the triangle center X 110 as focus. [1]

  6. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    A family of conic sections of varying eccentricity share a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated ...

  7. Orthoptic (geometry) - Wikipedia

    en.wikipedia.org/wiki/Orthoptic_(geometry)

    Examples: The orthoptic of a parabola is its directrix (proof: see below),; The orthoptic of an ellipse + = is the director circle + = + (see below),; The orthoptic of a hyperbola =, > is the director circle + = (in case of a ≤ b there are no orthogonal tangents, see below),

  8. AOL Mail

    mail.aol.com/?rp=webmail-std/en-us/basic

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Focus (geometry) - Wikipedia

    en.wikipedia.org/wiki/Focus_(geometry)

    To generate a hyperbola, the radius of the directrix circle is chosen to be less than the distance between the center of this circle and the focus; thus, the focus is outside the directrix circle. The arms of the hyperbola approach asymptotic lines and the "right-hand" arm of one branch of a hyperbola meets the "left-hand" arm of the other ...