Search results
Results From The WOW.Com Content Network
A variety X over an uncountable algebraically closed field k is uniruled if and only if there is a rational curve passing through every k-point of X. By contrast, there are varieties over the algebraic closure k of a finite field which are not uniruled but have a rational curve through every k-point.
Every irreducible complex algebraic curve is birational to a unique smooth projective curve, so the theory for curves is trivial. The case of surfaces was first investigated by the geometers of the Italian school around 1900; the contraction theorem of Guido Castelnuovo essentially describes the process of constructing a minimal model of any smooth projective surface.
Faltings's theorem is a result in arithmetic geometry, according to which a curve of genus greater than 1 over the field of rational numbers has only finitely many rational points. This was conjectured in 1922 by Louis Mordell , [ 1 ] and known as the Mordell conjecture until its 1983 proof by Gerd Faltings . [ 2 ]
The modularity of an elliptic curve E of conductor N can be expressed also by saying that there is a non-constant rational map defined over ℚ, from the modular curve X 0 (N) to E. In particular, the points of E can be parametrized by modular functions. For example, a modular parametrization of the curve y 2 − y = x 3 − x is given by [18]
In contrast to positively curved varieties such as del Pezzo surfaces, a complex algebraic K3 surface X is not uniruled; that is, it is not covered by a continuous family of rational curves. On the other hand, in contrast to negatively curved varieties such as surfaces of general type, X contains a large discrete set of rational curves ...
Bergmann's rule - Penguins on the Earth (mass m, height h) [1] Bergmann's rule is an ecogeographical rule that states that, within a broadly distributed taxonomic clade, populations and species of larger size are found in colder environments, while populations and species of smaller size are found in warmer regions.
Gneiss, a foliated metamorphic rock. Quartzite, a non-foliated metamorphic rock. Foliation in geology refers to repetitive layering in metamorphic rocks. [1] Each layer can be as thin as a sheet of paper, or over a meter in thickness. [1] The word comes from the Latin folium, meaning "leaf", and refers to the sheet-like planar structure. [1]
The species–area relationship or species–area curve describes the relationship between the area of a habitat, or of part of a habitat, and the number of species found within that area. Larger areas tend to contain larger numbers of species, and empirically, the relative numbers seem to follow systematic mathematical relationships. [ 1 ]