Search results
Results From The WOW.Com Content Network
An anode ray (also positive ray or canal ray) is a beam of positive ions that is created by certain types of gas-discharge tubes. They were first observed in Crookes tubes during experiments by the German scientist Eugen Goldstein, in 1886. [1] Later work on anode rays by Wilhelm Wien and J. J. Thomson led to the development of mass spectrometry.
In 1937, Ives performed a detailed analysis of the spectral shifts to be expected of particle beams observed at different angles following a "test theory" which was consistent with the Michelson-Morley experiment (MMX) and the Kennedy-Thorndike experiment (KTX), but which differed from special relativity (and the mathematically equivalent theory of Lorentz and Lamor) in including a parameter ...
Crookes X-ray tube from around 1910 Another Crookes x-ray tube. The device attached to the neck of the tube (right) is an "osmotic softener". When the voltage applied to a Crookes tube is high enough, around 5,000 volts or greater, [16] it can accelerate the electrons to a high enough velocity to create X-rays when they hit the anode or the glass wall of the tube.
A white light source—emitting light of multiple wavelengths—is focused on a sample (the pairs of complementary colors are indicated by the yellow dotted lines). Upon striking the sample, photons that match the energy gap of the molecules present (green light in this example) are absorbed, exciting the molecules. Other photons are scattered ...
Eugen Goldstein (/ ˈ ɔɪ ɡ ən / OY-gən, German: [ˈɔʏɡeːn ˈɡɔlt.ʃtaɪn, ˈɔʏɡn̩-]; 5 September 1850 – 25 December 1930) was a German physicist.He was an early investigator of discharge tubes, the discoverer of anode rays or canal rays, later identified as positive ions in the gas phase including the hydrogen ion.
Gamma rays, X-rays, and the higher energy range of ultraviolet light constitute the ionizing part of the electromagnetic spectrum. The word "ionize" refers to the breaking of one or more electrons away from an atom, an action that requires the relatively high energies that these electromagnetic waves supply.
Photosystem II (or water-plastoquinone oxidoreductase) is the first protein complex in the light-dependent reactions of oxygenic photosynthesis. It is located in the thylakoid membrane of plants , algae , and cyanobacteria .
Fig. 9 shows the results of attempting to measure the 4861 Angstrom line emitted by a beam of canal rays (a mixture of H1+, H2+, and H3+ ions) as they recombine with electrons stripped from the dilute hydrogen gas used to fill the Canal ray tube. Here, the predicted result of the TDE is a 4861.06 Angstrom line.