Search results
Results From The WOW.Com Content Network
An anode ray (also positive ray or canal ray) is a beam of positive ions that is created by certain types of gas-discharge tubes. They were first observed in Crookes tubes during experiments by the German scientist Eugen Goldstein, in 1886. [1] Later work on anode rays by Wilhelm Wien and J. J. Thomson led to the development of mass spectrometry.
In 1937, Ives performed a detailed analysis of the spectral shifts to be expected of particle beams observed at different angles following a "test theory" which was consistent with the Michelson-Morley experiment (MMX) and the Kennedy-Thorndike experiment (KTX), but which differed from special relativity (and the mathematically equivalent theory of Lorentz and Lamor) in including a parameter ...
By recording the attenuation of light for various wavelengths, an absorption spectrum can be obtained. In physics, absorption of electromagnetic radiation is how matter (typically electrons bound in atoms) takes up a photon's energy—and so transforms electromagnetic energy into internal energy of the absorber (for example, thermal energy). [1]
Crookes X-ray tube from around 1910 Another Crookes x-ray tube. The device attached to the neck of the tube (right) is an "osmotic softener". When the voltage applied to a Crookes tube is high enough, around 5,000 volts or greater, [16] it can accelerate the electrons to a high enough velocity to create X-rays when they hit the anode or the glass wall of the tube.
The electrons in these tubes moved in a slow diffusion process, never gaining much speed, so these tubes didn't produce cathode rays. Instead, they produced a colorful glow discharge (as in a modern neon light), caused when the electrons struck gas atoms, exciting their orbital electrons to higher energy levels. The electrons released this ...
Fig. 9 shows the results of attempting to measure the 4861 Angstrom line emitted by a beam of canal rays (a mixture of H1+, H2+, and H3+ ions) as they recombine with electrons stripped from the dilute hydrogen gas used to fill the Canal ray tube. Here, the predicted result of the TDE is a 4861.06 Angstrom line.
Because the kinetic energy of the emitted electrons is exactly the energy of the incident photon minus the energy of the electron's binding within an atom, molecule or solid, the binding energy can be determined by shining a monochromatic X-ray or UV light of a known energy and measuring the kinetic energies of the photoelectrons. [17]
The secondary electrons induced by these high energy x-rays result in the Cherenkov light emission, where the detected signal can be imaged at the entry and exit surfaces of the tissue. [30] The Cherenkov light emitted from patient's tissue during radiation therapy is a very low light level signal but can be detected by specially designed ...