Search results
Results From The WOW.Com Content Network
Problems are often modelled as a state space, a set of states that a problem can be in. The set of states forms a graph where two states are connected if there is an operation that can be performed to transform the first state into the second. State space search often differs from traditional computer science search methods because the state ...
The state space or phase space is the geometric space in which the axes are the state variables. The system state can be represented as a vector , the state vector . If the dynamical system is linear, time-invariant, and finite-dimensional, then the differential and algebraic equations may be written in matrix form.
Vacuum World, a shortest path problem with a finite state space In computer science , a state space is a discrete space representing the set of all possible configurations of a "system". [ 1 ] It is a useful abstraction for reasoning about the behavior of a given system and is widely used in the fields of artificial intelligence and game theory .
In artificial intelligence and computer programming, state space planning is a process used in designing programs to search for data or solutions to problems. In a computer algorithm that searches a data structure for a piece of data, for example a program that looks up a word in a computer dictionary, the state space is a collective term for all the data to be searched.
For the simplest example of a continuous, LTI system, the row dimension of the state space expression ˙ = + determines the interval; each row contributes a vector in the state space of the system. If there are not enough such vectors to span the state space of x {\displaystyle \mathbf {x} } , then the system cannot achieve controllability.
In control theory, Ackermann's formula is a control system design method for solving the pole allocation problem for invariant-time systems by Jürgen Ackermann. [1] One of the primary problems in control system design is the creation of controllers that will change the dynamics of a system by changing the eigenvalues of the matrix representing the dynamics of the closed-loop system. [2]
By Gelfand representation, every commutative C*-algebra A is of the form C 0 (X) for some locally compact Hausdorff X. In this case, S(A) consists of positive Radon measures on X, and the pure states are the evaluation functionals on X. More generally, the GNS construction shows that every state is, after choosing a suitable representation, a ...
The state-transition matrix is used to find the solution to a general state-space representation of a linear system in the following form ˙ = () + (), =, where () are the states of the system, () is the input signal, () and () are matrix functions, and is the initial condition at .