When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  3. Symbolic regression - Wikipedia

    en.wikipedia.org/wiki/Symbolic_regression

    Symbolic regression (SR) is a type of regression analysis that searches the space of mathematical expressions to find the model that best fits a given dataset, both in terms of accuracy and simplicity. No particular model is provided as a starting point for symbolic regression.

  4. Word2vec - Wikipedia

    en.wikipedia.org/wiki/Word2vec

    The use of different model parameters and different corpus sizes can greatly affect the quality of a word2vec model. Accuracy can be improved in a number of ways, including the choice of model architecture (CBOW or Skip-Gram), increasing the training data set, increasing the number of vector dimensions, and increasing the window size of words ...

  5. scikit-multiflow - Wikipedia

    en.wikipedia.org/wiki/Scikit-multiflow

    The scikit-multiflow library is implemented under the open research principles and is currently distributed under the BSD 3-clause license. scikit-multiflow is mainly written in Python, and some core elements are written in Cython for performance. scikit-multiflow integrates with other Python libraries such as Matplotlib for plotting, scikit-learn for incremental learning methods [4 ...

  6. Ordinal regression - Wikipedia

    en.wikipedia.org/wiki/Ordinal_regression

    Suppose one has a set of observations, represented by length-p vectors x 1 through x n, with associated responses y 1 through y n, where each y i is an ordinal variable on a scale 1, ..., K. For simplicity, and without loss of generality, we assume y is a non-decreasing vector, that is, y i ≤ {\displaystyle \leq } y i+1 .

  7. Multivariate adaptive regression spline - Wikipedia

    en.wikipedia.org/wiki/Multivariate_adaptive...

    In statistics, multivariate adaptive regression splines (MARS) is a form of regression analysis introduced by Jerome H. Friedman in 1991. [1] It is a non-parametric regression technique and can be seen as an extension of linear models that automatically models nonlinearities and interactions between variables.

  8. Relevance vector machine - Wikipedia

    en.wikipedia.org/wiki/Relevance_vector_machine

    However RVMs use an expectation maximization (EM)-like learning method and are therefore at risk of local minima. This is unlike the standard sequential minimal optimization (SMO)-based algorithms employed by SVMs , which are guaranteed to find a global optimum (of the convex problem).

  9. Polynomial kernel - Wikipedia

    en.wikipedia.org/wiki/Polynomial_kernel

    For degree-d polynomials, the polynomial kernel is defined as [2](,) = (+)where x and y are vectors of size n in the input space, i.e. vectors of features computed from training or test samples and c ≥ 0 is a free parameter trading off the influence of higher-order versus lower-order terms in the polynomial.