Search results
Results From The WOW.Com Content Network
The above equations are the microscopic version of Maxwell's equations, expressing the electric and the magnetic fields in terms of the (possibly atomic-level) charges and currents present. This is sometimes called the "general" form, but the macroscopic version below is equally general, the difference being one of bookkeeping.
Maxwell's relations are a set of equations in thermodynamics which are derivable from the symmetry of second derivatives and from the definitions of the thermodynamic potentials. These relations are named for the nineteenth-century physicist James Clerk Maxwell .
[24] [25] Maxwell deals with the motion-related aspect of electromagnetic induction, v × B, in equation (77), which is the same as equation (D) in Maxwell's original equations as listed below. It is expressed today as the force law equation, F = q ( E + v × B ) , which sits adjacent to Maxwell's equations and bears the name Lorentz force ...
The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems.
Eighteen of Maxwell's twenty original equations can be vectorized into six equations, labeled to below, each of which represents a group of three original equations in component form. The 19th and 20th of Maxwell's component equations appear as and below, making a total of eight vector equations. These are listed below in Maxwell's original ...
The first equation listed above corresponds to both Gauss's Law (for β = 0) and the Ampère-Maxwell Law (for β = 1, 2, 3). The second equation corresponds to the two remaining equations, Gauss's law for magnetism (for β = 0) and Faraday's Law (for β = 1, 2, 3).
The thermodynamic square can also be used to find the first-order derivatives in the common Maxwell relations.The following procedure should be considered: Looking at the four corners of the square and make a shape with the quantities of interest.
Maxwell relations in thermodynamics are often used to derive thermodynamic relations. [ 2 ] The Clapeyron equation allows us to use pressure, temperature, and specific volume to determine an enthalpy change that is connected to a phase change.