Search results
Results From The WOW.Com Content Network
Function: Amylase is an enzyme that is responsible for the breaking of the bonds in starches, polysaccharides, and complex carbohydrates to be turned into simple sugars that will be easier to absorb. Clinical Significance: Amylase also has medical history in the use of Pancreatic Enzyme Replacement Therapy (PERT). One of the components is ...
Following Buchner's example, enzymes are usually named according to the reaction they carry out: the suffix -ase is combined with the name of the substrate (e.g., lactase is the enzyme that cleaves lactose) or to the type of reaction (e.g., DNA polymerase forms DNA polymers). [15] The biochemical identity of enzymes was still unknown in the ...
This enzyme belongs to the family of isomerases, specifically those intramolecular transferases that transfer functional groups. The systematic name of this enzyme class is chorismate pyruvatemutase. Chorismate mutase, also known as hydroxyphenylpyruvate synthase, participates in phenylalanine, tyrosine and tryptophan biosynthesis. [1]
The Enzyme Commission number (EC number) is a numerical classification scheme for enzymes, based on the chemical reactions they catalyze. [1] As a system of enzyme nomenclature, every EC number is associated with a recommended name for the corresponding enzyme-catalyzed reaction. EC numbers do not specify enzymes but enzyme-catalyzed reactions.
Enzymes appear in the subcategory Category:Enzymes by function according to the EC number classification: EC 1 Oxidoreductases: catalyze oxidation/reduction reactions; EC 2 Transferases: transfer a functional group (e.g. a methyl or phosphate group) EC 3 Hydrolases: catalyze the hydrolysis of various bonds
Other names in common use include alkane 1-hydroxylase, omega-hydroxylase, fatty acid omega-hydroxylase, alkane monooxygenase, 1-hydroxylase, AlkB, and alkane hydroxylase. It contains a diiron non-heme active site. Recently two crystal structures of the enzyme have appeared that provide much more information about the structure of the enzyme.
The systematic name of this enzyme class is alanine racemase. This enzyme is also called L-alanine racemase. This enzyme participates in alanine and aspartate metabolism and D-alanine metabolism. It employs one cofactor, pyridoxal phosphate. At least two compounds, 3-Fluoro-D-alanine and D-Cycloserine are known to inhibit this enzyme.
The systematic name of this enzyme class is S-adenosyl-L-methionine:glycine N-methyltransferase. Other names in common use include glycine methyltransferase, S-adenosyl-L-methionine:glycine methyltransferase, and GNMT. This family of enzymes participates in the metabolism of multiple amino acids.