When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Loop (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Loop_(graph_theory)

    A graph with a loop on vertex 1. In graph theory, a loop (also called a self-loop or a buckle) is an edge that connects a vertex to itself. A simple graph contains no loops. Depending on the context, a graph or a multigraph may be defined so as to either allow or disallow the presence of loops (often in concert with allowing or disallowing ...

  3. Degree (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Degree_(graph_theory)

    The degree sequence problem is the problem of finding some or all graphs with the degree sequence being a given non-increasing sequence of positive integers. (Trailing zeroes may be ignored since they are trivially realized by adding an appropriate number of isolated vertices to the graph.) A sequence which is the degree sequence of some simple ...

  4. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    The degree or valency of a vertex is the number of edges that are incident to it, where a loop is counted twice. The degree of a graph is the maximum of the degrees of its vertices. In an undirected simple graph of order n, the maximum degree of each vertex is n − 1 and the maximum size of the graph is ⁠ n(n − 1) / 2 ⁠.

  5. Configuration model - Wikipedia

    en.wikipedia.org/wiki/Configuration_model

    Simple graphs: Graphs without self-loops or multi-edges. Multi-edge graphs: Graphs allowing multiple edges between the same pair of nodes. Loopy graphs: Graphs that include self-loops (edges connecting a node to itself). Directed graphs: Models with specified in-degrees and out-degrees for each node. Undirected graphs: Models that consider the ...

  6. Adjacency matrix - Wikipedia

    en.wikipedia.org/wiki/Adjacency_matrix

    The same concept can be extended to multigraphs and graphs with loops by storing the number of edges between each two vertices in the corresponding matrix element, and by allowing nonzero diagonal elements. Loops may be counted either once (as a single edge) or twice (as two vertex-edge incidences), as long as a consistent convention is followed.

  7. Degree matrix - Wikipedia

    en.wikipedia.org/wiki/Degree_matrix

    In an undirected graph, this means that each loop increases the degree of a vertex by two. In a directed graph, the term degree may refer either to indegree (the number of incoming edges at each vertex) or outdegree (the number of outgoing edges at each vertex).

  8. Havel–Hakimi algorithm - Wikipedia

    en.wikipedia.org/wiki/Havel–Hakimi_algorithm

    A simple graph contains no double edges or loops. [1] The degree sequence is a list of numbers in nonincreasing order indicating the number of edges incident to each vertex in the graph. [2] If a simple graph exists for exactly the given degree sequence, the list of integers is called graphic. The Havel-Hakimi algorithm constructs a special ...

  9. Regular graph - Wikipedia

    en.wikipedia.org/wiki/Regular_graph

    In graph theory, a regular graph is a graph where each vertex has the same number of neighbors; i.e. every vertex has the same degree or valency. A regular directed graph must also satisfy the stronger condition that the indegree and outdegree of each internal vertex are equal to each other. [1]