When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix. ... The general formula ... For example ...

  3. Matrix multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication...

    The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:

  4. Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Strassen_algorithm

    The left column visualizes the calculations necessary to determine the result of a 2x2 matrix multiplication. Naïve matrix multiplication requires one multiplication for each "1" of the left column. Each of the other columns (M1-M7) represents a single one of the 7 multiplications in the Strassen algorithm. The sum of the columns M1-M7 gives ...

  5. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...

  6. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    For example, if A is a 3-by-0 matrix and B is a 0-by-3 matrix, then AB is the 3-by-3 zero matrix corresponding to the null map from a 3-dimensional space V to itself, while BA is a 0-by-0 matrix. There is no common notation for empty matrices, but most computer algebra systems allow creating and computing with them.

  7. Diagonal matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonal_matrix

    An identity matrix of any size, or any multiple of it is a diagonal matrix called a scalar matrix, for example, []. In geometry , a diagonal matrix may be used as a scaling matrix , since matrix multiplication with it results in changing scale (size) and possibly also shape ; only a scalar matrix results in uniform change in scale.

  8. Kronecker product - Wikipedia

    en.wikipedia.org/wiki/Kronecker_product

    This formula is also useful for representing 2D image processing operations in matrix-vector form. Another example is when a matrix can be factored as a Kronecker product, then matrix multiplication can be performed faster by using the above formula. This can be applied recursively, as done in the radix-2 FFT and the Fast Walsh–Hadamard ...

  9. Conformable matrix - Wikipedia

    en.wikipedia.org/wiki/Conformable_matrix

    In this case, we say that A and B are conformable for multiplication (in that sequence). Since squaring a matrix involves multiplying it by itself (A 2 = AA) a matrix must be m × m (that is, it must be a square matrix) to be conformable for squaring. Thus for example only a square matrix can be idempotent.