When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Activation function - Wikipedia

    en.wikipedia.org/wiki/Activation_function

    When multiple layers use the identity activation function, the entire network is equivalent to a single-layer model. Range When the range of the activation function is finite, gradient-based training methods tend to be more stable, because pattern presentations significantly affect only limited weights.

  3. Softmax function - Wikipedia

    en.wikipedia.org/wiki/Softmax_function

    This can make the calculations for the softmax layer (i.e. the matrix multiplications to determine the , followed by the application of the softmax function itself) computationally expensive. [ 9 ] [ 10 ] What's more, the gradient descent backpropagation method for training such a neural network involves calculating the softmax for every ...

  4. PyTorch - Wikipedia

    en.wikipedia.org/wiki/PyTorch

    PyTorch is a machine learning library based on the Torch library, [4] [5] [6] ... including various layers and activation functions, enabling the construction of ...

  5. Rectifier (neural networks) - Wikipedia

    en.wikipedia.org/wiki/Rectifier_(neural_networks)

    Plot of the ReLU (blue) and GELU (green) functions near x = 0. In the context of artificial neural networks, the rectifier or ReLU (rectified linear unit) activation function [1] [2] is an activation function defined as the non-negative part of its argument, i.e., the ramp function:

  6. Attention (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Attention_(machine_learning)

    The linear layer alone has 5 million (500 × 10k) weights – ~10 times more weights than the recurrent layer. score 100-long alignment score w 100-long vector attention weight. These are "soft" weights which changes during the forward pass, in contrast to "hard" neuronal weights that change during the learning phase. A

  7. Normalization (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(machine...

    Activation normalization, on the other hand, is specific to deep learning, and includes methods that rescale the activation of hidden neurons inside neural networks. Normalization is often used to: increase the speed of training convergence, reduce sensitivity to variations and feature scales in input data, reduce overfitting,

  8. Keras - Wikipedia

    en.wikipedia.org/wiki/Keras

    Keras contains numerous implementations of commonly used neural-network building blocks such as layers, objectives, activation functions, optimizers, and a host of tools for working with image and text data to simplify programming in deep neural network area. [11]

  9. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    The "signal" is a real number, and the output of each neuron is computed by some non-linear function of the sum of its inputs, called the activation function. The strength of the signal at each connection is determined by a weight, which adjusts during the learning process. Typically, neurons are aggregated into layers.