Search results
Results From The WOW.Com Content Network
The general results presented above for Hamilton's principle can be applied to optics using the Lagrangian defined in Fermat's principle.The Euler-Lagrange equations with parameter σ =x 3 and N=2 applied to Fermat's principle result in ˙ = with k = 1, 2 and where L is the optical Lagrangian and ˙ = /.
Hamilton's principle states that the true evolution q(t) of a system described by N generalized coordinates q = (q 1, q 2, ..., q N) between two specified states q 1 = q(t 1) and q 2 = q(t 2) at two specified times t 1 and t 2 is a stationary point (a point where the variation is zero) of the action functional [] = ((), ˙ (),) where (, ˙,) is the Lagrangian function for the system.
Hamilton's optico-mechanical analogy is a conceptual parallel between trajectories in classical mechanics and wavefronts in optics, introduced by William Rowan Hamilton around 1831. [1] It may be viewed as linking Huygens' principle of optics with Maupertuis' principle of mechanics.
Hamilton's principle is still valid even if the coordinates L is expressed in are not independent, here r k, but the constraints are still assumed to be holonomic. [37] As always the end points are fixed δr k (t 1) = δr k (t 2) = 0 for all k. What cannot be done is to simply equate the coefficients of δr k to zero because the δr k are not ...
In this example, the time derivative of q is the velocity, and so the first Hamilton equation means that the particle's velocity equals the derivative of its kinetic energy with respect to its momentum.
Visulization of flux through differential area and solid angle. As always ^ is the unit normal to the incident surface A, = ^, and ^ is a unit vector in the direction of incident flux on the area element, θ is the angle between them.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A related problem is posed by Fermat's principle: light follows the path of shortest optical length connecting two points, which depends upon the material of the medium. One corresponding concept in mechanics is the principle of least/stationary action. Many important problems involve functions of several variables.