When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    Although an explicit inverse is not necessary to estimate the vector of unknowns, it is the easiest way to estimate their accuracy, found in the diagonal of a matrix inverse (the posterior covariance matrix of the vector of unknowns). However, faster algorithms to compute only the diagonal entries of a matrix inverse are known in many cases. [19]

  3. General linear group - Wikipedia

    en.wikipedia.org/wiki/General_linear_group

    In mathematics, the general linear group of degree n is the set of n×n invertible matrices, together with the operation of ordinary matrix multiplication.This forms a group, because the product of two invertible matrices is again invertible, and the inverse of an invertible matrix is invertible, with the identity matrix as the identity element of the group.

  4. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    A variant of Gaussian elimination called Gauss–Jordan elimination can be used for finding the inverse of a matrix, if it exists. If A is an n × n square matrix, then one can use row reduction to compute its inverse matrix, if it exists. First, the n × n identity matrix is augmented to the right of A, forming an n × 2n block matrix [A | I]

  5. Rotations and reflections in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotations_and_reflections...

    These matrices all have a determinant whose absolute value is unity. Rotation matrices have a determinant of +1, and reflection matrices have a determinant of −1. The set of all orthogonal two-dimensional matrices together with matrix multiplication form the orthogonal group: O(2).

  6. Partial inverse of a matrix - Wikipedia

    en.wikipedia.org/wiki/Partial_inverse_of_a_matrix

    partial inversion preserves the space of symmetric matrices; Use of the partial inverse in numerical analysis is due to the fact that there is some flexibility in the choices of pivots, allowing for non-invertible elements to be avoided, and because the operation of rotation (of the graph of the pivoted matrix) has better numerical stability ...

  7. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    In mathematics, and in particular linear algebra, the Moore–Penrose inverse ⁠ + ⁠ of a matrix ⁠ ⁠, often called the pseudoinverse, is the most widely known generalization of the inverse matrix. [1] It was independently described by E. H. Moore in 1920, [2] Arne Bjerhammar in 1951, [3] and Roger Penrose in 1955. [4]

  8. Woodbury matrix identity - Wikipedia

    en.wikipedia.org/wiki/Woodbury_matrix_identity

    Nonsingularity of the latter requires that B −1 exist since it equals B(I + VA −1 UB) and the rank of the latter cannot exceed the rank of B. [7] Since B is invertible, the two B terms flanking the parenthetical quantity inverse in the right-hand side can be replaced with (B −1) −1, which results in the original Woodbury identity.

  9. Sherman–Morrison formula - Wikipedia

    en.wikipedia.org/wiki/Sherman–Morrison_formula

    In linear algebra, the Sherman–Morrison formula, named after Jack Sherman and Winifred J. Morrison, computes the inverse of a "rank-1 update" to a matrix whose inverse has previously been computed. [1] [2] [3] That is, given an invertible matrix and the outer product of vectors and , the formula cheaply computes an updated matrix inverse (+)).