Search results
Results From The WOW.Com Content Network
Photochemical air quality models have become widely utilized tools for assessing the effectiveness of control strategies adopted by regulatory agencies. These models are large-scale air quality models that simulate the changes of pollutant concentrations in the atmosphere by characterizing the chemical and physical processes in the atmosphere.
= milligrams of pollutant per cubic meter of air at sea level atmospheric pressure and T: ppmv = air pollutant concentration, in parts per million by volume T = ambient temperature in K = 273. + °C 0.082057338 = Universal gas constant in L atm mol −1 K −1: M = molecular mass (or molecular weight) of the air pollutant
1 Nm 3 of any gas (measured at 0 °C and 1 atmosphere of absolute pressure) equals 37.326 scf of that gas (measured at 60 °F and 1 atmosphere of absolute pressure). 1 kmol of any ideal gas equals 22.414 Nm 3 of that gas at 0 °C and 1 atmosphere of absolute pressure ... and 1 lbmol of any ideal gas equals 379.482 scf of that gas at 60 °F and ...
For premium support please call: 800-290-4726 more ways to reach us
The models also serve to assist in the design of effective control strategies to reduce emissions of harmful air pollutants. During the late 1960s, the Air Pollution Control Office of the U.S. EPA initiated research projects that would lead to the development of models for the use by urban and transportation planners. [1]
Pressure drop (Δp) Liquid-to-gas ratio (L/G) Liquid-inlet pressure (p L) Removal efficiency: Applications: Gases: 1.3–7.6 cm of water 0.07–2.70 L/m 3 (0.5–20 gal/1,000 ft 3) 70–2800 kPa 50–90 + % (high efficiency only when the gas is very soluble) Mining industries Chemical process industry Boilers and incinerators Iron and steel ...
SAFE AIR (Simulation of Air pollution From Emissions Above Inhomogeneous Regions) is an advanced atmospheric pollution dispersion model for calculating concentrations of atmospheric pollutants emitted both continuously or intermittently from point, line, volume and area sources. It adopts an integrated Gaussian puff modeling system.
Pressure drop (ΔP) is the resistance to air flow across the baghouse. A high pressure drop corresponds with a higher resistance to airflow. Pressure drop is calculated by determining the difference in total pressure at two points, typically the inlet and outlet. Filter drag is the resistance across the fabric-dust layer.