When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. k-nearest neighbors algorithm - Wikipedia

    en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

    The K-nearest neighbor classification performance can often be significantly improved through metric learning. Popular algorithms are neighbourhood components analysis and large margin nearest neighbor. Supervised metric learning algorithms use the label information to learn a new metric or pseudo-metric.

  3. Structured kNN - Wikipedia

    en.wikipedia.org/wiki/Structured_kNN

    Structured k-nearest neighbours (SkNN) [1] [2] [3] is a machine learning algorithm that generalizes k-nearest neighbors (k-NN). k-NN supports binary classification, multiclass classification, and regression, [4] whereas SkNN allows training of a classifier for general structured output.

  4. Neighbourhood components analysis - Wikipedia

    en.wikipedia.org/wiki/Neighbourhood_components...

    Neighbourhood components analysis is a supervised learning method for classifying multivariate data into distinct classes according to a given distance metric over the data. . Functionally, it serves the same purposes as the K-nearest neighbors algorithm and makes direct use of a related concept termed stochastic nearest neighbo

  5. Multi-label classification - Wikipedia

    en.wikipedia.org/wiki/Multi-label_classification

    The scikit-learn Python package implements some multi-labels algorithms and metrics. The scikit-multilearn Python package specifically caters to the multi-label classification. It provides multi-label implementation of several well-known techniques including SVM, kNN and many more. The package is built on top of scikit-learn ecosystem.

  6. iDistance - Wikipedia

    en.wikipedia.org/wiki/IDistance

    The iDistance is designed to process kNN queries in high-dimensional spaces efficiently and it is especially good for skewed data distributions, which usually occur in real-life data sets. The iDistance can be augmented with machine learning models to learn the data distributions for searching and storing the multi-dimensional data.

  7. Nearest neighbor search - Wikipedia

    en.wikipedia.org/wiki/Nearest_neighbor_search

    k-nearest neighbor search identifies the top k nearest neighbors to the query. This technique is commonly used in predictive analytics to estimate or classify a point based on the consensus of its neighbors. k-nearest neighbor graphs are graphs in which every point is connected to its k nearest neighbors.

  8. Oversampling and undersampling in data analysis - Wikipedia

    en.wikipedia.org/wiki/Oversampling_and_under...

    The feature space for the minority class for which we want to oversample could be beak length, wingspan, and weight (all continuous). To then oversample, take a sample from the dataset, and consider its k nearest neighbors (in feature space). To create a synthetic data point, take the vector between one of those k neighbors, and the current ...

  9. Nearest neighbor - Wikipedia

    en.wikipedia.org/wiki/Nearest_neighbor

    Nearest neighbor graph in geometry; Nearest neighbor function in probability theory; Nearest neighbor decoding in coding theory; The k-nearest neighbor algorithm in machine learning, an application of generalized forms of nearest neighbor search and interpolation; The nearest neighbour algorithm for approximately solving the travelling salesman ...