Ads
related to: kidney efferent and afferent arterioles
Search results
Results From The WOW.Com Content Network
When renal blood flow is reduced (indicating hypotension) or there is a decrease in sodium or chloride ion concentration, the macula densa of the distal tubule releases prostaglandins (mainly PGI2 and PGE2) and nitric oxide, which cause the juxtaglomerular cells lining the afferent arterioles to release renin, activating the renin–angiotensin–aldosterone system, to increase blood pressure ...
The efferent arterioles form a convergence of the capillaries of the glomerulus, and carry blood away from the glomerulus that has already been filtered. They play an important role in maintaining the glomerular filtration rate despite fluctuations in blood pressure .
Note 3: The efferent arterioles do not directly drain into the interlobular vein, but rather they go to the peritubular capillaries first. The efferent arterioles of the juxtamedullary nephron drain into the vasa recta.
The afferent arterioles, then, enter Bowman's capsule and end in the glomerulus. From each glomerulus, the corresponding efferent arteriole arises and then exits the capsule near the point where the afferent arteriole enters. Distally, efferent arterioles branch out to form dense plexuses (i.e., capillary beds) around their adjacent renal tubules.
Extraglomerular mesangial cells are located in the junction between the afferent and efferent arterioles. These cells have a contractile property similar to vascular smooth muscles and thus play a role in “regulating GFR” by altering the vessel diameter.
The glomerulus receives its blood supply from an afferent arteriole of the renal arterial circulation. Unlike most capillary beds, the glomerular capillaries exit into efferent arterioles rather than venules. The resistance of the efferent arterioles causes sufficient hydrostatic pressure within the glomerulus to provide the force for ...