Search results
Results From The WOW.Com Content Network
Fluorescence is one of two kinds of photoluminescence, the emission of light by a substance that has absorbed light or other electromagnetic radiation. When exposed to ultraviolet radiation, many substances will glow (fluoresce) with colored visible light. The color of the light emitted depends on the chemical composition of the substance.
A simplified Jablonski diagram illustrating the change of energy levels.. The principle behind fluorescence is that the fluorescent moiety contains electrons which can absorb a photon and briefly enter an excited state before either dispersing the energy non-radiatively or emitting it as a photon, but with a lower energy, i.e., at a longer wavelength (wavelength and energy are inversely ...
Biofluorescence is fluorescence exhibited by a living organism: part of the organism absorbs light or other radiation at one wavelength and emits visible light at another, usually longer. The absorbed radiation is often blue or ultraviolet , while the light emitted is typically green, red, or anything in between.
Photobleaching is an important parameter to account for in real-time single-molecule fluorescence imaging in biophysics. At light intensities used in single-molecule fluorescence imaging (0.1-1 kW/cm 2 in typical experimental setups), even most robust fluorophores continue to emit for up to 10 seconds before photobleaching in a single step. For ...
The four pigments in a bird's cone cells (in this example, estrildid finches) extend the range of color vision into the ultraviolet. [1]Tetrachromacy (from Greek tetra, meaning "four" and chroma, meaning "color") is the condition of possessing four independent channels for conveying color information, or possessing four types of cone cell in the eye.
In fluorescence, the species is first excited, by absorbing a photon, from its ground electronic state to one of the various vibrational states in the excited electronic state. Collisions with other molecules cause the excited molecule to lose vibrational energy until it reaches the lowest vibrational state from the excited electronic state.
In autofluorescence, fluorescence from the eye occurs without injection of the dye. This may be seen with optic nerve head drusen, astrocytic hamartoma, or calcific scarring. Black-and-white photos give better contrast than color photos, which aren't necessary because the filter transmits only one color of light.
Micrograph of paper autofluorescing under ultraviolet illumination. The individual fibres in this sample are around 10 μm in diameter.. Autofluorescence is the natural fluorescence of biological structures such as mitochondria and lysosomes, in contrast to fluorescence originating from artificially added fluorescent markers (fluorophores).