Search results
Results From The WOW.Com Content Network
Both the logistic map and the sine map are one-dimensional maps that map the interval [0, 1] to [0, 1] and satisfy the following property, called unimodal . = =. The map is differentiable and there exists a unique critical point c in [0, 1] such that ′ =. In general, if a one-dimensional map with one parameter and one variable is unimodal and ...
Such an orbit also has a velocity in excess of the escape velocity and as such, will escape the gravitational pull of the planet and continue to travel infinitely until it is acted upon by another body with sufficient gravitational force. Radial orbit: An orbit with zero angular momentum and eccentricity equal to 1. The two objects move ...
Orbital position vector, orbital velocity vector, other orbital elements. In astrodynamics and celestial dynamics, the orbital state vectors (sometimes state vectors) of an orbit are Cartesian vectors of position and velocity that together with their time () uniquely determine the trajectory of the orbiting body in space.
In control theory, a trajectory is a time-ordered set of states of a dynamical system (see e.g. Poincaré map). In discrete mathematics , a trajectory is a sequence ( f k ( x ) ) k ∈ N {\displaystyle (f^{k}(x))_{k\in \mathbb {N} }} of values calculated by the iterated application of a mapping f {\displaystyle f} to an element x {\displaystyle ...
In physics, motion is when an object changes its position with respect to a reference point in a given time. Motion is mathematically described in terms of displacement, distance, velocity, acceleration, speed, and frame of reference to an observer
Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
The vector from A to B is the expected path for plane based on the initial heading (HDG) and true airspeed (TAS). The vector from B to C is the wind velocity (W/V), and the third vector is the actual track (TR) and ground speed (GS). The drift angle is marked in red.