When.com Web Search

  1. Ad

    related to: solving each equation by factoring

Search results

  1. Results From The WOW.Com Content Network
  2. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    Factorization is one of the most important methods for expression manipulation for several reasons. If one can put an equation in a factored form E⋅F = 0, then the problem of solving the equation splits into two independent (and generally easier) problems E = 0 and F = 0. When an expression can be factored, the factors are often much simpler ...

  3. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    For most students, factoring by inspection is the first method of solving quadratic equations to which they are exposed. [ 6 ] : 202–207 If one is given a quadratic equation in the form x 2 + bx + c = 0 , the sought factorization has the form ( x + q )( x + s ) , and one has to find two numbers q and s that add up to b and whose product is c ...

  4. Quadratic formula - Wikipedia

    en.wikipedia.org/wiki/Quadratic_formula

    A similar but more complicated method works for cubic equations, which have three resolvents and a quadratic equation (the "resolving polynomial") relating ⁠ ⁠ and ⁠ ⁠, which one can solve by the quadratic equation, and similarly for a quartic equation (degree 4), whose resolving polynomial is a cubic, which can in turn be solved. [14]

  5. Equation solving - Wikipedia

    en.wikipedia.org/wiki/Equation_solving

    An example of using Newton–Raphson method to solve numerically the equation f(x) = 0. In mathematics, to solve an equation is to find its solutions, which are the values (numbers, functions, sets, etc.) that fulfill the condition stated by the equation, consisting generally of two expressions related by an equals sign.

  6. Algebraic equation - Wikipedia

    en.wikipedia.org/wiki/Algebraic_equation

    If an equation P(x) = 0 of degree n has a rational root α, the associated polynomial can be factored to give the form P(X) = (X – α)Q(X) (by dividing P(X) by X – α or by writing P(X) – P(α) as a linear combination of terms of the form X k – α k, and factoring out X – α. Solving P(x) = 0 thus reduces to solving the degree n – 1 ...

  7. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    The Zassenhaus algorithm processes each case (each subset) quickly, however, in the worst case, it considers an exponential number of cases. The first polynomial time algorithm for factoring rational polynomials was discovered by Lenstra, Lenstra and Lovász and is an application of the Lenstra–Lenstra–Lovász lattice basis reduction (LLL ...

  8. Solving quadratic equations with continued fractions - Wikipedia

    en.wikipedia.org/wiki/Solving_quadratic...

    The quadratic equation on a number can be solved using the well-known quadratic formula, which can be derived by completing the square. That formula always gives the roots of the quadratic equation, but the solutions are expressed in a form that often involves a quadratic irrational number, which is an algebraic fraction that can be evaluated ...

  9. Solution in radicals - Wikipedia

    en.wikipedia.org/wiki/Solution_in_radicals

    A solution in radicals or algebraic solution is an expression of a solution of a polynomial equation that is algebraic, that is, relies only on addition, subtraction, multiplication, division, raising to integer powers, and extraction of n th roots (square roots, cube roots, etc.). A well-known example is the quadratic formula