Search results
Results From The WOW.Com Content Network
The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory. Both areas are highly related, as the complexity of an algorithm is always an upper bound on the complexity of the problem solved by this algorithm. Moreover, for ...
The complexity of an algorithm is usually taken to be its worst-case complexity unless specified otherwise. Analyzing a particular algorithm falls under the field of analysis of algorithms . To show an upper bound T ( n ) {\displaystyle T(n)} on the time complexity of a problem, one needs to show only that there is a particular algorithm with ...
A solving algorithm for UNAMBIGUOUS-SAT is allowed to exhibit any behavior, including endless looping, on a formula having several satisfying assignments. Although this problem seems easier, Valiant and Vazirani have shown [ 25 ] that if there is a practical (i.e. randomized polynomial-time ) algorithm to solve it, then all problems in NP can ...
In the theoretical analysis of algorithms, the normal practice is to estimate their complexity in the asymptotic sense. The most commonly used notation to describe resource consumption or "complexity" is Donald Knuth 's Big O notation , representing the complexity of an algorithm as a function of the size of the input n {\textstyle n} .
Here, complexity refers to the time complexity of performing computations on a multitape Turing machine. [1] See big O notation for an explanation of the notation used. Note: Due to the variety of multiplication algorithms, () below stands in for the complexity of the chosen multiplication algorithm.
In algorithmic information theory (a subfield of computer science and mathematics), the Kolmogorov complexity of an object, such as a piece of text, is the length of a shortest computer program (in a predetermined programming language) that produces the object as output.
This popular sorting algorithm has an average-case performance of O(n log(n)), which contributes to making it a very fast algorithm in practice. But given a worst-case input, its performance degrades to O(n 2). Also, when implemented with the "shortest first" policy, the worst-case space complexity is instead bounded by O(log(n)).
An efficient algorithm for NP-complete problems is generally characterized as one which runs in polynomial time for all inputs; this is equivalent to requiring efficient worst-case complexity. However, an algorithm which is inefficient on a "small" number of inputs may still be efficient for "most" inputs that occur in practice.