Search results
Results From The WOW.Com Content Network
The lower quartile value is the median of the lower half of the data. The upper quartile value is the median of the upper half of the data. The values found by this method are also known as "Tukey's hinges"; [4] see also midhinge.
The IQR of a set of values is calculated as the difference between the upper and lower quartiles, Q 3 and Q 1. Each quartile is a median [8] calculated as follows. Given an even 2n or odd 2n+1 number of values first quartile Q 1 = median of the n smallest values third quartile Q 3 = median of the n largest values [8]
If data are placed in order, then the lower quartile is central to the lower half of the data and the upper quartile is central to the upper half of the data. These quartiles are used to calculate the interquartile range, which helps to describe the spread of the data, and determine whether or not any data points are outliers.
The 4-quantiles are called quartiles → Q; the difference between upper and lower quartiles is also called the interquartile range, midspread or middle fifty → IQR = Q 3 − Q 1. The 5-quantiles are called quintiles or pentiles → QU; The 6-quantiles are called sextiles → S; The 7-quantiles are called septiles → SP; The 8-quantiles are ...
upper whisker top end The middle three values – the lower quartile , median , and upper quartile – are the usual statistics from the five-number summary and are the standard values for the box in a box plot .
Third quartile (Q 3 or 75th percentile): also known as the upper quartile q n (0.75), it is the median of the upper half of the dataset. [ 7 ] In addition to the minimum and maximum values used to construct a box-plot, another important element that can also be employed to obtain a box-plot is the interquartile range (IQR), as denoted below:
The two are complementary in sense that if one knows the midhinge and the IQR, one can find the first and third quartiles. The use of the term hinge for the lower or upper quartiles derives from John Tukey 's work on exploratory data analysis in the late 1970s, [ 1 ] and midhinge is a fairly modern term dating from around that time.
The 25th percentile is also known as the first quartile (Q 1), the 50th percentile as the median or second quartile (Q 2), and the 75th percentile as the third quartile (Q 3). For example, the 50th percentile (median) is the score below (or at or below, depending on the definition) which 50% of the scores in the distribution are found.