Search results
Results From The WOW.Com Content Network
Box-and-whisker plot with four mild outliers and one extreme outlier. In this chart, outliers are defined as mild above Q3 + 1.5 IQR and extreme above Q3 + 3 IQR. The interquartile range is often used to find outliers in data. Outliers here are defined as observations that fall below Q1 − 1.5 IQR or above Q3 + 1.5 IQR.
Figure 2. Box-plot with whiskers from minimum to maximum Figure 3. Same box-plot with whiskers drawn within the 1.5 IQR value. A boxplot is a standardized way of displaying the dataset based on the five-number summary: the minimum, the maximum, the sample median, and the first and third quartiles.
The fences are sometimes also referred to as "whiskers" while the entire plot visual is called a "box-and-whisker" plot. When spotting an outlier in the data set by calculating the interquartile ranges and boxplot features, it might be easy to mistakenly view it as evidence that the population is non-normal or that the sample is contaminated.
The five-number summary gives information about the location (from the median), spread (from the quartiles) and range (from the sample minimum and maximum) of the observations. Since it reports order statistics (rather than, say, the mean) the five-number summary is appropriate for ordinal measurements , as well as interval and ratio measurements.
Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range. For instance, when the variance of data in a set is large, the data is widely scattered. On the other hand, when the variance is small, the data in the set is clustered.
Simple L-estimators can be visually estimated from a box plot, and include interquartile range, midhinge, range, mid-range, and trimean. In statistics, an L-estimator (or L-statistic) is an estimator which is a linear combination of order statistics of the measurements. This can be as little as a single point, as in the median (of an odd number ...
The quantiles of a random variable are preserved under increasing transformations, in the sense that, for example, if m is the median of a random variable X, then 2 m is the median of 2 X, unless an arbitrary choice has been made from a range of values to specify a particular quantile. (See quantile estimation, above, for examples of such ...
One of the most common robust measures of scale is the interquartile range (IQR), the difference between the 75th percentile and the 25th percentile of a sample; this is the 25% trimmed range, an example of an L-estimator. Other trimmed ranges, such as the interdecile range (10% trimmed range) can also be used.