Search results
Results From The WOW.Com Content Network
Band bending can be induced by several types of contact. In this section metal-semiconductor contact, surface state, applied bias and adsorption induced band bending are discussed. Figure 1: Energy band diagrams of the surface contact between metals and n-type semiconductors.
Band diagram for Schottky barrier at equilibrium Band diagram for semiconductor heterojunction at equilibrium. In solid-state physics of semiconductors, a band diagram is a diagram plotting various key electron energy levels (Fermi level and nearby energy band edges) as a function of some spatial dimension, which is often denoted x. [1]
An example band-bending diagram is shown in the figure. For convenience, energy is expressed in eV and voltage is expressed in volts, avoiding the need for a factor q for the elementary charge . In the figure, a two-layer structure is shown, consisting of an insulator as left-hand layer and a semiconductor as right-hand layer.
Shown to the right is a diagram of band-bending interfaces between two different metals (high and low work functions) and two different semiconductors (n-type and p-type). Volker Heine was one of the first to estimate the length of the tail end of metal electron states extending into the semiconductor's energy gap. He calculated the variation ...
File: Diagram of band-bending interfaces between two different metals and two different semiconductors.jpg
To understand how band structure changes relative to the Fermi level in real space, a band structure plot is often first simplified in the form of a band diagram. In a band diagram the vertical axis is energy while the horizontal axis represents real space. Horizontal lines represent energy levels, while blocks represent energy bands.
The figure shows a band bending diagram for a p–n diode; that is, the band edges for the conduction band (upper line) and the valence band (lower line) are shown as a function of position on both sides of the junction between the p-type material (left side) and the n-type material (right side).
Band diagram for metal-semiconductor junction at zero bias (equilibrium). Shown is the graphical definition of the Schottky barrier height, Φ B, for an n-type semiconductor as the difference between the interfacial conduction band edge E C and Fermi level E F.