Search results
Results From The WOW.Com Content Network
In geometry, a degenerate conic is a conic (a second-degree plane curve, defined by a polynomial equation of degree two) that fails to be an irreducible curve.This means that the defining equation is factorable over the complex numbers (or more generally over an algebraically closed field) as the product of two linear polynomials.
Lines A, B and C are concurrent in Y. In geometry, lines in a plane or higher-dimensional space are concurrent if they intersect at a single point.. The set of all lines through a point is called a pencil, and their common intersection is called the vertex of the pencil.
The intercept theorem, also known as Thales's theorem, basic proportionality theorem or side splitter theorem, is an important theorem in elementary geometry about the ratios of various line segments that are created if two rays with a common starting point are intercepted by a pair of parallels.
First we consider the intersection of two lines L 1 and L 2 in two-dimensional space, with line L 1 being defined by two distinct points (x 1, y 1) and (x 2, y 2), and line L 2 being defined by two distinct points (x 3, y 3) and (x 4, y 4). [2] The intersection P of line L 1 and L 2 can be defined using determinants.
Each coordinate of the intersection points of two conic sections is a solution of a quartic equation. The same is true for the intersection of a line and a torus.It follows that quartic equations often arise in computational geometry and all related fields such as computer graphics, computer-aided design, computer-aided manufacturing and optics.
The function is called the conformal factor. A diffeomorphism between two Riemannian manifolds is called a conformal map if the pulled back metric is conformally equivalent to the original one. For example, stereographic projection of a sphere onto the plane augmented with a point at infinity is a conformal map.
However, parallel (non-crossing) pairs of lines are less restricted in hyperbolic line arrangements than in the Euclidean plane: in particular, the relation of being parallel is an equivalence relation for Euclidean lines but not for hyperbolic lines. [51] The intersection graph of the lines in a hyperbolic arrangement can be an arbitrary ...
As an example, consider the following passage: [4]... the velocity vectors always lie on a surface which Minkowski calls a four-dimensional hyperboloid since, expressed in terms of purely real coordinates (y 1, ..., y 4), its equation is y 2 1 + y 2 2 + y 2 3 − y 2 4 = −1, analogous to the hyperboloid y 2 1 + y 2 2 − y 2 3 = −1 of three ...