When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Catechol oxidase - Wikipedia

    en.wikipedia.org/wiki/Catechol_oxidase

    The key role of catechol oxidase in enzymatic browning makes it a common target for inhibition. While a number of inhibitory strategies exist such as high temperature treatments(70-90 °C) to eliminate catechol oxidase catalytic activity, [6] a popular strategy is decreasing the pH with citric acid. Catechol oxidase is more catalytically active ...

  3. Oxidative enzyme - Wikipedia

    en.wikipedia.org/wiki/Oxidative_enzyme

    When the surface of apples are exposed to the oxygen in the air, the oxidative enzymes like polyphenol oxidase and catechol oxidase oxidize the fruit (electrons are lost to the air). Such browning can be prevented by cooking the fruit or lowering the pH (which destroys, inactivates, or denatures the enzyme) or by preventing oxygen from getting ...

  4. Hemocyanin - Wikipedia

    en.wikipedia.org/wiki/Hemocyanin

    Hemocyanin is homologous to the phenol oxidases (e.g. tyrosinase) since both proteins have histidine residues, called "type 3" copper-binding coordination centers, as do the enzymes tyrosinase and catechol oxidase. [19] In both cases inactive precursors to the enzymes (also called zymogens or proenzymes) must be activated first. This is done by ...

  5. Polyphenol oxidase - Wikipedia

    en.wikipedia.org/wiki/Polyphenol_oxidase

    Polyphenol oxidase is an enzyme found throughout the plant and animal kingdoms, [31] including most fruits and vegetables. [32] PPO has importance to the food industry because it catalyzes enzymatic browning when tissue is damaged from bruising, compression or indentations, making the produce less marketable and causing economic loss.

  6. Oxidase - Wikipedia

    en.wikipedia.org/wiki/Oxidase

    An important example is EC 7.1.1.9 cytochrome c oxidase, the key enzyme that allows the body to employ oxygen in the generation of energy and the final component of the electron transfer chain. Other examples are: EC 1.1.3.4 Glucose oxidase; EC 1.4.3.4 Monoamine oxidase; EC 1.14.-.- Cytochrome P450 oxidase; EC 1.6.3.1 NADPH oxidase

  7. Laccase - Wikipedia

    en.wikipedia.org/wiki/Laccase

    For example, laccases play a role in the formation of lignin by promoting the oxidative coupling of monolignols, a family of naturally occurring phenols. [ 1 ] [ 2 ] Other laccases, such as those produced by the fungus Pleurotus ostreatus , play a role in the degradation of lignin, and can therefore be classed as lignin-modifying enzymes . [ 3 ]

  8. Plant secondary metabolism - Wikipedia

    en.wikipedia.org/wiki/Plant_secondary_metabolism

    As mentioned above in the History tab, secondary plant metabolites help the plant maintain an intricate balance with the environment, often adapting to match the environmental needs. Plant metabolites that color the plant are a good example of this, as the coloring of a plant can attract pollinators and also defend against attack by animals.

  9. Catechol dioxygenase - Wikipedia

    en.wikipedia.org/wiki/Catechol_dioxygenase

    Catechol dioxygenases are metalloprotein enzymes that carry out the oxidative cleavage of catechols.This class of enzymes incorporate dioxygen into the substrate.Catechol dioxygenases belong to the class of oxidoreductases and have several different substrate specificities, including catechol 1,2-dioxygenase (EC 1.13.11.1), catechol 2,3-dioxygenase (EC 1.13.11.2), and protocatechuate 3,4 ...