Search results
Results From The WOW.Com Content Network
Pascal's law (also Pascal's principle [1] [2] [3] or the principle of transmission of fluid-pressure) is a principle in fluid mechanics given by Blaise Pascal that states that a pressure change at any point in a confined incompressible fluid is transmitted throughout the fluid such that the same change occurs everywhere. [4]
Pascaline (also known as the arithmetic machine or Pascal's calculator) is a mechanical calculator invented by Blaise Pascal in 1642. Pascal was led to develop a calculator by the laborious arithmetical calculations required by his father's work as the supervisor of taxes in Rouen , France. [ 2 ]
q is the dynamic pressure in pascals (i.e., N/m 2, ρ (Greek letter rho) is the fluid mass density (e.g. in kg/m 3), and; u is the flow speed in m/s. It can be thought of as the fluid's kinetic energy per unit volume. For incompressible flow, the dynamic pressure of a fluid is the difference between its total pressure and static pressure.
0.8–2 MPa 120–290 psi Pressure used in boilers of steam locomotives [citation needed] 1.1 MPa 162 psi Pressure of an average human bite [citation needed] 2.8–8.3 MPa 400–1,200 psi Pressure of carbon dioxide propellant in a paintball gun [64] 5 MPa 700 psi Water pressure of the output of a coin-operated car wash spray nozzle [58] 5 MPa ...
What links here; Upload file; Special pages; Printable version; Page information; Get shortened URL; Download QR code
These two pressures are not pressures in the usual sense - they cannot be measured using a pressure sensor. To avoid potential ambiguity when referring to pressure in fluid dynamics, many authors use the term static pressure to distinguish it from total pressure and dynamic pressure ; the term static pressure is identical to the term pressure ...
Under STP, a reaction between three cubic meters of hydrogen gas and one cubic meter of nitrogen gas will produce about two cubic meters of ammonia.. The law of combining volumes states that when gases chemically react together, they do so in amounts by volume which bear small whole-number ratios (the volumes calculated at the same temperature and pressure).
Two decades after Schickard's supposedly failed attempt, in 1642, Blaise Pascal decisively solved these particular problems with his invention of the mechanical calculator. [3] Co-opted into his father's labour as tax collector in Rouen, Pascal designed the calculator to help in the large amount of tedious arithmetic required; [ 4 ] it was ...