Ad
related to: correlation calculator mathcracker statistics test probability distribution
Search results
Results From The WOW.Com Content Network
Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.
Illustration of the Kolmogorov–Smirnov statistic. The red line is a model CDF, the blue line is an empirical CDF, and the black arrow is the KS statistic.. In statistics, the Kolmogorov–Smirnov test (also K–S test or KS test) is a nonparametric test of the equality of continuous (or discontinuous, see Section 2.2), one-dimensional probability distributions.
Some correlation statistics, such as the rank correlation coefficient, are also invariant to monotone transformations of the marginal distributions of X and/or Y. Pearson / Spearman correlation coefficients between X and Y are shown when the two variables' ranges are unrestricted, and when the range of X is restricted to the interval (0,1).
In probability theory and statistics, the mathematical concepts of covariance and correlation are very similar. [ 1 ] [ 2 ] Both describe the degree to which two random variables or sets of random variables tend to deviate from their expected values in similar ways.
The PPCC plot is formed by: Vertical axis: Probability plot correlation coefficient; Horizontal axis: Value of shape parameter. That is, for a series of values of the shape parameter, the correlation coefficient is computed for the probability plot associated with a given value of the shape parameter.
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
The application of Fisher's transformation can be enhanced using a software calculator as shown in the figure. Assuming that the r-squared value found is 0.80, that there are 30 data [clarification needed], and accepting a 90% confidence interval, the r-squared value in another random sample from the same population may range from 0.656 to 0.888.
In statistics, the Bhattacharyya distance is a quantity which represents a notion of similarity between two probability distributions. [1] It is closely related to the Bhattacharyya coefficient, which is a measure of the amount of overlap between two statistical samples or populations.