Search results
Results From The WOW.Com Content Network
A motor nerve, or efferent nerve, is a nerve that contains exclusively efferent nerve fibers and transmits motor signals from the central nervous system (CNS) to the muscles of the body. This is different from the motor neuron , which includes a cell body and branching of dendrites, while the nerve is made up of a bundle of axons.
The central nervous system is responsible for the orderly recruitment of motor neurons, beginning with the smallest motor units. [4] Henneman's size principle indicates that motor units are recruited from smallest to largest based on the size of the load. For smaller loads requiring less force, slow twitch, low-force, fatigue-resistant muscle ...
The muscle fibers belonging to one motor unit can be spread throughout part, or most of the entire muscle, depending on the number of fibers and size of the muscle. [2] [3] When a motor neuron is activated, all of the muscle fibers innervated by the motor neuron are stimulated and contract. The activation of one motor neuron will result in a ...
Henneman’s size principle describes relationships between properties of motor neurons and the muscle fibers they innervate and thus control, which together are called motor units. Motor neurons with large cell bodies tend to innervate fast-twitch, high-force, less fatigue-resistant muscle fibers , whereas motor neurons with small cell bodies ...
The corticospinal tracts myelinate largely during the first and second years after birth. The majority of nerve axons are small (<4μm) in diameter. About 3% of nerve axons have a much larger diameter (16μm) and arise from Betz cells, mostly in the leg area of the primary motor cortex. These cells are notable because of their rapid conduction ...
Joseph Erlanger and Herbert Gasser earlier developed the classification system for peripheral nerve fibers, [67] based on axonal conduction velocity, myelination, fiber size etc. Alan Hodgkin and Andrew Huxley also employed the squid giant axon (1939) and by 1952 they had obtained a full quantitative description of the ionic basis of the action ...
Many voluntary movements rely on spinal lower motor neurons, which innervate skeletal muscle fibers and act as a link between upper motor neurons and muscles. [2] [3] Cranial nerve lower motor neurons also control some voluntary movements of the eyes, face and tongue, and contribute to chewing, swallowing and vocalization. [4]
The other two classes are the group B nerve fibers, and the group C nerve fibers. Group A are heavily myelinated, group B are moderately myelinated, and group C are unmyelinated. [1] [2] The other classification is a sensory grouping that uses the terms type Ia and type Ib, type II, type III, and type IV, sensory fibers. [1]