Search results
Results From The WOW.Com Content Network
Character recognition, handwriting recognition, OCR, classification 2009 [136] T. de Campos EMNIST dataset Handwritten characters from 3600 contributors Derived from NIST Special Database 19. Converted to 28x28 pixel images, matching the MNIST dataset. [137] 800,000 Images character recognition, classification, handwriting recognition 2016
Working with volunteer observers, Johnson used image intensifier equipment to measure the volunteer observer's ability to identify scale model targets under various conditions. His experiments produced the first empirical data on perceptual thresholds that was expressed in terms of line pairs .
Image acquisition – A digital image is produced by one or several image sensors, which, besides various types of light-sensitive cameras, include range sensors, tomography devices, radar, ultra-sonic cameras, etc. Depending on the type of sensor, the resulting image data is an ordinary 2D image, a 3D volume, or an image sequence.
Image analysis or imagery analysis is the extraction of meaningful information from images; mainly from digital images by means of digital image processing techniques. [1] Image analysis tasks can be as simple as reading bar coded tags or as sophisticated as identifying a person from their face .
[9] [10] The last two examples form the subtopic image analysis of pattern recognition that deals with digital images as input to pattern recognition systems. [11] [12] Optical character recognition is an example of the application of a pattern classifier. The method of signing one's name was captured with stylus and overlay starting in 1990.
Contextual image classification, a topic of pattern recognition in computer vision, is an approach of classification based on contextual information in images. "Contextual" means this approach is focusing on the relationship of the nearby pixels, which is also called neighbourhood.
In the detection phase of the Viola–Jones object detection framework, a window of the target size is moved over the input image, and for each subsection of the image the Haar-like feature is calculated. This difference is then compared to a learned threshold that separates non-objects from objects.
An example of a typical computer vision computation pipeline for face recognition using k-NN including feature extraction and dimension reduction pre-processing steps (usually implemented with OpenCV): Haar face detection; Mean-shift tracking analysis; PCA or Fisher LDA projection into feature space, followed by k-NN classification