When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Aleph number - Wikipedia

    en.wikipedia.org/wiki/Aleph_number

    The aleph numbers differ from the infinity (∞) commonly found in algebra and calculus, in that the alephs measure the sizes of sets, while infinity is commonly defined either as an extreme limit of the real number line (applied to a function or sequence that "diverges to infinity" or "increases without bound"), or as an extreme point of the ...

  3. Division by zero - Wikipedia

    en.wikipedia.org/wiki/Division_by_zero

    Numbers whose exponent is too large to represent instead "overflow" to positive or negative infinity (+∞ or −∞), while numbers whose exponent is too small to represent instead "underflow" to positive or negative zero (+0 or −0). A NaN (not a number) value represents undefined results. In IEEE arithmetic, division of 0/0 or ∞/∞ ...

  4. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    For numbers with a base-2 exponent part of 0, i.e. numbers with an absolute value higher than or equal to 1 but lower than 2, an ULP is exactly 2 −23 or about 10 −7 in single precision, and exactly 2 −53 or about 10 −16 in double precision. The mandated behavior of IEEE-compliant hardware is that the result be within one-half of a ULP.

  5. Absolute infinite - Wikipedia

    en.wikipedia.org/wiki/Absolute_Infinite

    The absolute infinite (symbol: Ω), in context often called "absolute", is an extension of the idea of infinity proposed by mathematician Georg Cantor.It can be thought of as a number that is bigger than any other conceivable or inconceivable quantity, either finite or transfinite.

  6. NaN - Wikipedia

    en.wikipedia.org/wiki/NaN

    In computing, NaN (/ n æ n /), standing for Not a Number, is a particular value of a numeric data type (often a floating-point number) which is undefined as a number, such as the result of 0/0. Systematic use of NaNs was introduced by the IEEE 754 floating-point standard in 1985, along with the representation of other non-finite quantities ...

  7. Transfinite number - Wikipedia

    en.wikipedia.org/wiki/Transfinite_number

    Any finite natural number can be used in at least two ways: as an ordinal and as a cardinal. Cardinal numbers specify the size of sets (e.g., a bag of five marbles), whereas ordinal numbers specify the order of a member within an ordered set [9] (e.g., "the third man from the left" or "the twenty-seventh day of January").

  8. Infinitesimal - Wikipedia

    en.wikipedia.org/wiki/Infinitesimal

    In mathematics, an infinitesimal number is a non-zero quantity that is closer to 0 than any non-zero real number is. The word infinitesimal comes from a 17th-century Modern Latin coinage infinitesimus , which originally referred to the " infinity - eth " item in a sequence .

  9. Projectively extended real line - Wikipedia

    en.wikipedia.org/wiki/Projectively_extended_real...

    More precisely, the point at infinity is the limit of every sequence of real numbers whose absolute values are increasing and unbounded. The projectively extended real line may be identified with a real projective line in which three points have been assigned the specific values 0, 1 and ∞.