When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Ranking (information retrieval) - Wikipedia

    en.wikipedia.org/wiki/Ranking_(information...

    Ranking of query is one of the fundamental problems in information retrieval (IR), [1] the scientific/engineering discipline behind search engines. [2] Given a query q and a collection D of documents that match the query, the problem is to rank, that is, sort, the documents in D according to some criterion so that the "best" results appear early in the result list displayed to the user.

  3. TrustRank - Wikipedia

    en.wikipedia.org/wiki/TrustRank

    Today, this algorithm is a part of major web search engines like Yahoo! and Google. [2] One of the most important factors that help web search engine determine the quality of a web page when returning results are backlinks. Search engines take a number and quality of backlinks into consideration when assigning a place to a certain web page in ...

  4. Discounted cumulative gain - Wikipedia

    en.wikipedia.org/wiki/Discounted_cumulative_gain

    Cumulative Gain is the sum of the graded relevance values of all results in a search result list. CG does not take into account the rank (position) of a result in the result list. The CG at a particular rank position is defined as: = = Where is the graded relevance of the result at position . The value computed with the CG function is ...

  5. Learning to rank - Wikipedia

    en.wikipedia.org/wiki/Learning_to_rank

    A possible architecture of a machine-learned search engine. Ranking is a central part of many information retrieval problems, such as document retrieval, collaborative filtering, sentiment analysis, and online advertising. A possible architecture of a machine-learned search engine is shown in the accompanying figure.

  6. Okapi BM25 - Wikipedia

    en.wikipedia.org/wiki/Okapi_BM25

    In information retrieval, Okapi BM25 (BM is an abbreviation of best matching) is a ranking function used by search engines to estimate the relevance of documents to a given search query. It is based on the probabilistic retrieval framework developed in the 1970s and 1980s by Stephen E. Robertson , Karen Spärck Jones , and others.

  7. Search engine - Wikipedia

    en.wikipedia.org/wiki/Search_engine

    Most search engines employ methods to rank the results to provide the "best" results first. How a search engine decides which pages are the best matches, and what order the results should be shown in, varies widely from one engine to another. [35] The methods also change over time as Internet usage changes and new techniques evolve.

  8. Search algorithm - Wikipedia

    en.wikipedia.org/wiki/Search_algorithm

    Specific applications of search algorithms include: Problems in combinatorial optimization, such as: . The vehicle routing problem, a form of shortest path problem; The knapsack problem: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as ...

  9. RankBrain - Wikipedia

    en.wikipedia.org/wiki/RankBrain

    It helps Google to process search results and provide more relevant search results for users. [2] In a 2015 interview, Google commented that RankBrain was the third most important factor in the ranking algorithm, after with links and content, [ 2 ] [ 3 ] out of about 200 ranking factors.

  1. Related searches how search engines rank results in python list of commands pdf example free

    learning to rank exampleslearning to rank