Search results
Results From The WOW.Com Content Network
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset.
A chatbot (originally chatterbot) [1] is a software application or web interface designed to have textual or spoken conversations. [2] [3] [4] Modern chatbots are typically online and use generative artificial intelligence systems that are capable of maintaining a conversation with a user in natural language and simulating the way a human would behave as a conversational partner.
AI tools like ChatGPT have shown promise in enhancing literacy skills among adolescents and adults. They provide instant feedback on writing, aid in idea generation, and help improve grammar and vocabulary. [15] These tools can also support students with disabilities, such as dyslexia, by assisting with spelling and grammar.
Above: An image classifier, an example of a neural network trained with a discriminative objective. Below: A text-to-image model, an example of a network trained with a generative objective. Since its inception, the field of machine learning used both discriminative models and generative models, to model and predict data.
GPT-2's training corpus included virtually no French text; non-English text was deliberately removed while cleaning the dataset prior to training, and as a consequence, only 10MB of French of the remaining 40,000MB was available for the model to learn from (mostly from foreign-language quotations in English posts and articles). [2]
The name is a play on words based on the earlier concept of one-shot learning, in which classification can be learned from only one, or a few, examples. Zero-shot methods generally work by associating observed and non-observed classes through some form of auxiliary information, which encodes observable distinguishing properties of objects. [ 1 ]
Text-to-image models typically do not understand grammar and sentence structure in the same way as large language models, [48] thus may require a different set of prompting techniques. Text-to-image models do not natively understand negation. The prompt "a party with no cake" is likely to produce an image including a cake. [48]