Search results
Results From The WOW.Com Content Network
The primary difference between a computer algebra system and a traditional calculator is the ability to deal with equations symbolically rather than numerically. The precise uses and capabilities of these systems differ greatly from one system to another, yet their purpose remains the same: manipulation of symbolic equations.
The most obvious use of these equations is for images recorded by a camera. In this case the equation describes transformations from object space (X, Y, Z) to image coordinates (x, y). It forms the basis for the equations used in bundle adjustment. They indicate that the image point (on the sensor plate of the camera), the observed point (on ...
The code for the math example reads: <math display= "inline" > \sum_{i=0}^\infty 2^{-i} </math> The quotation marks around inline are optional and display=inline is also valid. [2] Technically, the command \textstyle will be added to the user input before the TeX command is passed to the renderer. The result will be displayed without further ...
Let X be an affine space over a field k, and V be its associated vector space. An affine transformation is a bijection f from X onto itself that is an affine map; this means that a linear map g from V to V is well defined by the equation () = (); here, as usual, the subtraction of two points denotes the free vector from the second point to the first one, and "well-defined" means that ...
The linear maps (or linear functions) of vector spaces, viewed as geometric maps, map lines to lines; that is, they map collinear point sets to collinear point sets and so, are collineations. In projective geometry these linear mappings are called homographies and are just one type of collineation.
Formally, let V be a vector space over a field K and W a vector space over a field L. Consider the projective spaces PG(V) and PG(W), consisting of the vector lines of V and W. Call D(V) and D(W) the set of subspaces of V and W respectively. A collineation from PG(V) to PG(W) is a map α : D(V) → D(W), such that: α is a bijection.
The two subtleties in the above analysis are that the resulting point is a quadratic equation (not a linear equation), and that the constraints are independent. The first is simple: if A , B , and C all vanish, then the equation D x + E y + F = 0 {\displaystyle Dx+Ey+F=0} defines a line, and any 3 points on this (indeed any number of points ...
Algebra: direct input of inequalities, implicit polynomials, linear and quadratic equations; calculations with numbers, points and vectors; Calculus: direct input of functions (including piecewise-defined); intersections and roots of functions; symbolic derivatives and integrals (built-in CAS); sliders as parameters; Parametric Graphs: Yes