Search results
Results From The WOW.Com Content Network
Cronbach's alpha (Cronbach's ), also known as tau-equivalent reliability or coefficient alpha (coefficient ), is a reliability coefficient and a measure of the internal consistency of tests and measures. [1] [2] [3] It was named after the American psychologist Lee Cronbach.
Internal consistency is usually measured with Cronbach's alpha, a statistic calculated from the pairwise correlations between items. Internal consistency ranges between negative infinity and one. Coefficient alpha will be negative whenever there is greater within-subject variability than between-subject variability. [1]
The name of this formula stems from the fact that is the twentieth formula discussed in Kuder and Richardson's seminal paper on test reliability. [1] It is a special case of Cronbach's α, computed for dichotomous scores. [2] [3] It is often claimed that a high KR-20 coefficient (e.g., > 0.90) indicates a homogeneous test. However, like ...
The most common internal consistency measure is Cronbach's alpha, which is usually interpreted as the mean of all possible split-half coefficients. [9] Cronbach's alpha is a generalization of an earlier form of estimating internal consistency, Kuder–Richardson Formula 20. [9]
For the reliability of a two-item test, the formula is more appropriate than Cronbach's alpha (used in this way, the Spearman-Brown formula is also called "standardized Cronbach's alpha", as it is the same as Cronbach's alpha computed using the average item intercorrelation and unit-item variance, rather than the average item covariance and ...
Cronbach can refer to: Abraham Cronbach (1882–1965), American Rabbi, teacher and known pacifist Lee Cronbach (1916–2001), American educational psychologist
In statistical models applied to psychometrics, congeneric reliability ("rho C") [1] a single-administration test score reliability (i.e., the reliability of persons over items holding occasion fixed) coefficient, commonly referred to as composite reliability, construct reliability, and coefficient omega.
Cronbach's can be shown to provide a lower bound for reliability under rather mild assumptions. [citation needed] Thus, the reliability of test scores in a population is always higher than the value of Cronbach's in that population. Thus, this method is empirically feasible and, as a result, it is very popular among researchers.