When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Benzene - Wikipedia

    en.wikipedia.org/wiki/Benzene

    Benzene is a natural constituent of petroleum and is one of the elementary petrochemicals. Due to the cyclic continuous pi bonds between the carbon atoms, benzene is classed as an aromatic hydrocarbon. Benzene is a colorless and highly flammable liquid with a sweet smell, and is partially responsible for the aroma of gasoline.

  3. Benzene (data page) - Wikipedia

    en.wikipedia.org/wiki/Benzene_(data_page)

    *** Benzene is a carcinogen (cancer-causing agent). *** Very flammable. The pure material, and any solutions containing it, constitute a fire risk. Safe handling: Benzene should NOT be used at all unless no safer alternatives are available. If benzene must be used in an experiment, it should be handled at all stages in a fume cupboard.

  4. Nucleophilic aromatic substitution - Wikipedia

    en.wikipedia.org/wiki/Nucleophilic_aromatic...

    The mechanism of S N 2 reaction does not occur due to steric hindrance of the benzene ring. In order to attack the C atom, the nucleophile must approach in line with the C-LG (leaving group) bond from the back, where the benzene ring lies. It follows the general rule for which S N 2 reactions occur only at a tetrahedral carbon atom.

  5. C3-Benzenes - Wikipedia

    en.wikipedia.org/wiki/C3-Benzenes

    The C 3-benzenes are a class of organic aromatic compounds which contain a benzene ring and three other carbon atoms. For the hydrocarbons with no further unsaturation, there are four isomers. The chemical formula for all the saturated isomers is C 9 H 12 .

  6. Hyperconjugation - Wikipedia

    en.wikipedia.org/wiki/Hyperconjugation

    Hyperconjugation can be used to rationalize a variety of chemical phenomena, including the anomeric effect, the gauche effect, the rotational barrier of ethane, the beta-silicon effect, the vibrational frequency of exocyclic carbonyl groups, and the relative stability of substituted carbocations and substituted carbon centred radicals, and the thermodynamic Zaitsev's rule for alkene stability.

  7. Markovnikov's rule - Wikipedia

    en.wikipedia.org/wiki/Markovnikov's_rule

    The rule states that with the addition of a protic acid HX or other polar reagent to an asymmetric alkene, the acid hydrogen (H) or electropositive part gets attached to the carbon with more hydrogen substituents, and the halide (X) group or electronegative part gets attached to the carbon with more alkyl substituents.

  8. McLafferty rearrangement - Wikipedia

    en.wikipedia.org/wiki/McLafferty_rearrangement

    The McLafferty rearrangement is a reaction observed in mass spectrometry during the fragmentation or dissociation of organic molecules. It is sometimes found that a molecule containing a keto-group undergoes β-cleavage, with the gain of the γ-hydrogen atom, as first reported by Anthony Nicholson working in the Division of Chemical Physics at the CSIRO in Australia. [1]

  9. Antibonding molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Antibonding_molecular_orbital

    Similarly benzene with six carbon atoms has three bonding pi orbitals and three antibonding pi orbitals. Since each carbon atom contributes one electron to the π-system of benzene, there are six pi electrons which fill the three lowest-energy pi molecular orbitals (the bonding pi orbitals).