Search results
Results From The WOW.Com Content Network
The no-slip condition is an empirical assumption that has been useful in modelling many macroscopic experiments. It was one of three alternatives that were the subject of contention in the 19th century, with the other two being the stagnant-layer (a thin layer of stationary fluid on which the rest of the fluid flows) and the partial slip (a finite relative velocity between solid and fluid ...
In physics and fluid mechanics, a boundary layer is the thin layer of fluid in the immediate vicinity of a bounding surface formed by the fluid flowing along the surface. The fluid's interaction with the wall induces a no-slip boundary condition (zero velocity at the wall). The flow velocity then monotonically increases above the surface until ...
which is zero at the wall y = 0, corresponding with the no-slip condition for a wall at rest. This situation is often encountered in sound waves near a solid wall, or for the fluid motion near the sea bed in water waves. The vorticity, for the oscillating flow near a wall at rest, is equal to the vorticity in case of an oscillating plate but of ...
The boundary condition is the no slip condition. This problem is easily solved for the flow field: u ( y ) = y − y 2 2 . {\displaystyle u(y)={\frac {y-y^{2}}{2}}.} From this point onward, more quantities of interest can be easily obtained, such as viscous drag force or net flow rate.
The solution is = + + Since u needs to be finite at r = 0, c 1 = 0. The no slip boundary condition at the pipe wall requires that u = 0 at r = R (radius of the pipe), which yields c 2 = GR 2 / 4μ . Thus we have finally the following parabolic velocity profile:
This page needs a simple and yet complex explanation of no slip condition, as it is only those who know a thing or two about fuild flow will understand this page, and i don't mean know a thing or two as in the water flows down the pipe. —Preceding unsigned comment added by 208.79.15.101 21:00, 20 May 2008 (UTC)
There are a number of correlations for slip ratio. For homogeneous flow, S = 1 (i.e. there is no slip). The Chisholm correlation [2] [3] is: = The Chisholm correlation is based on application of the simple annular flow model and equates the frictional pressure drops in the liquid and the gas phase.
The question of finding solutions to such equations is known as the Dirichlet problem. In the sciences and engineering, a Dirichlet boundary condition may also be referred to as a fixed boundary condition or boundary condition of the first type. It is named after Peter Gustav Lejeune Dirichlet (1805–1859). [1]