When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Contour integration - Wikipedia

    en.wikipedia.org/wiki/Contour_integration

    Contour integration is closely related to the calculus of residues, [4] a method of complex analysis. One use for contour integrals is the evaluation of integrals along the real line that are not readily found by using only real variable methods. [5] Contour integration methods include:

  3. Residue (complex analysis) - Wikipedia

    en.wikipedia.org/wiki/Residue_(complex_analysis)

    Then, the residue at the point c is calculated as: ⁡ (,) = = = = using the results from contour integral of a monomial for counter clockwise contour integral around a point c. Hence, if a Laurent series representation of a function exists around c, then its residue around c is known by the coefficient of the ( z − c ) − 1 {\displaystyle ...

  4. Cauchy's integral theorem - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_integral_theorem

    In mathematics, the Cauchy integral theorem (also known as the Cauchy–Goursat theorem) in complex analysis, named after Augustin-Louis Cauchy (and Édouard Goursat), is an important statement about line integrals for holomorphic functions in the complex plane.

  5. Method of steepest descent - Wikipedia

    en.wikipedia.org/wiki/Method_of_steepest_descent

    In mathematics, the method of steepest descent or saddle-point method is an extension of Laplace's method for approximating an integral, where one deforms a contour integral in the complex plane to pass near a stationary point (saddle point), in roughly the direction of steepest descent or stationary phase. The saddle-point approximation is ...

  6. Cauchy's integral formula - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_integral_formula

    In mathematics, Cauchy's integral formula, named after Augustin-Louis Cauchy, is a central statement in complex analysis.It expresses the fact that a holomorphic function defined on a disk is completely determined by its values on the boundary of the disk, and it provides integral formulas for all derivatives of a holomorphic function.

  7. Residue theorem - Wikipedia

    en.wikipedia.org/wiki/Residue_theorem

    In complex analysis, the residue theorem, sometimes called Cauchy's residue theorem, is a powerful tool to evaluate line integrals of analytic functions over closed curves; it can often be used to compute real integrals and infinite series as well.

  8. Jordan's lemma - Wikipedia

    en.wikipedia.org/wiki/Jordan's_lemma

    The path C is the concatenation of the paths C 1 and C 2.. Jordan's lemma yields a simple way to calculate the integral along the real axis of functions f(z) = e i a z g(z) holomorphic on the upper half-plane and continuous on the closed upper half-plane, except possibly at a finite number of non-real points z 1, z 2, …, z n.

  9. Lists of integrals - Wikipedia

    en.wikipedia.org/wiki/Lists_of_integrals

    Contour integration; Integral of inverse functions; Integration by; ... If the integration is done in the complex plane the result depends on the path around the ...