When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    A divisor of an integer n is an integer m, for which n/m is again an integer (which is necessarily also a divisor of n). For example, 3 is a divisor of 21, since 21/7 = 3 (and therefore 7 is also a divisor of 21). If m is a divisor of n, then so is −m. The tables below only list positive divisors.

  3. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    The divisors of n are all products of some or all prime factors of n (including the empty product 1 of no prime factors). The number of divisors can be computed by increasing all multiplicities by 1 and then multiplying them. Divisors and properties related to divisors are shown in table of divisors.

  4. Divisor function - Wikipedia

    en.wikipedia.org/wiki/Divisor_function

    The notations d(n), ν(n) and τ(n) (for the German Teiler = divisors) are also used to denote σ 0 (n), or the number-of-divisors function [1] [2] (OEIS: A000005). When z is 1, the function is called the sigma function or sum-of-divisors function , [ 1 ] [ 3 ] and the subscript is often omitted, so σ ( n ) is the same as σ 1 ( n ) ( OEIS ...

  5. List of Mersenne primes and perfect numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_Mersenne_primes...

    So, 6 is a perfect number because the proper divisors of 6 are 1, 2, and 3, and 1 + 2 + 3 = 6. [ 2 ] [ 4 ] There is a one-to-one correspondence between the Mersenne primes and the even perfect numbers, but it is unknown whether there exist odd perfect numbers.

  6. Arithmetic function - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_function

    There is a larger class of number-theoretic functions that do not fit this definition, for example, the prime-counting functions. This article provides links to functions of both classes. An example of an arithmetic function is the divisor function whose value at a positive integer n is equal to the number of divisors of n.

  7. Amicable numbers - Wikipedia

    en.wikipedia.org/wiki/Amicable_numbers

    In mathematics, the amicable numbers are two different natural numbers related in such a way that the sum of the proper divisors of each is equal to the other number. That is, s(a)=b and s(b)=a, where s(n)=σ(n)-n is equal to the sum of positive divisors of n except n itself (see also divisor function). The smallest pair of amicable numbers is ...

  8. Aliquot sum - Wikipedia

    en.wikipedia.org/wiki/Aliquot_sum

    In number theory, the aliquot sum s(n) of a positive integer n is the sum of all proper divisors of n, that is, all divisors of n other than n itself. That is, = |,. It can be used to characterize the prime numbers, perfect numbers, sociable numbers, deficient numbers, abundant numbers, and untouchable numbers, and to define the aliquot sequence of a number.

  9. Ulam spiral - Wikipedia

    en.wikipedia.org/wiki/Ulam_spiral

    The number 1 has only a single factor, itself; each prime number has two factors, itself and 1; composite numbers are divisible by at least three different factors. Using the size of the dot representing an integer to indicate the number of factors and coloring prime numbers red and composite numbers blue produces the figure shown.