Search results
Results From The WOW.Com Content Network
Atmospheric thermodynamics is the study of heat-to-work transformations (and their reverse) that take place in the Earth's atmosphere and manifest as weather or climate. . Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and ...
One classical thermal escape mechanism is Jeans escape, [1] named after British astronomer Sir James Jeans, who first described this process of atmospheric loss. [2] In a quantity of gas, the average velocity of any one molecule is measured by the gas's temperature, but the velocities of individual molecules change as they collide with one another, gaining and losing kinetic energy.
Thermal velocity or thermal speed is a typical velocity of the thermal motion of particles that make up a gas, liquid, etc. Thus, indirectly, thermal velocity is a ...
The Hadley cell is a closed circulation loop which begins at the equator. There, moist air is warmed by the Earth's surface, decreases in density and rises. A similar air mass rising on the other side of the equator forces those rising air masses to move poleward. The rising air creates a low pressure zone near the equator.
The total average energy per unit time radiated by Earth is equal to the average energy flux j times the surface area 4πR 2, where R is Earth's radius. On the other hand, the average energy flux absorbed from sunlight is the solar constant S 0 times Earth's cross section of πR 2, times the fraction absorbed by Earth, which is one minus Earth ...
Based on air resistance, for example, the terminal speed of a skydiver in a belly-to-earth (i.e., face down) free fall position is about 55 m/s (180 ft/s). [3] This speed is the asymptotic limiting value of the speed, and the forces acting on the body balance each other more and more closely as the terminal speed is approached. In this example ...
The troposphere is the lowest layer of Earth's atmosphere. It extends from Earth's surface to an average height of about 12 km (7.5 mi; 39,000 ft), although this altitude varies from about 9 km (5.6 mi; 30,000 ft) at the geographic poles to 17 km (11 mi; 56,000 ft) at the Equator, [17] with some variation due
Physical laws and equations of motion, which govern the planetary boundary layer dynamics and microphysics, are strongly non-linear and considerably influenced by properties of the Earth's surface and evolution of processes in the free atmosphere. To deal with this complexity, the whole array of turbulence modelling has been proposed. However ...