Ad
related to: trapezoid midsegment theorem examples geometry
Search results
Results From The WOW.Com Content Network
The midpoint theorem generalizes to the intercept theorem, where rather than using midpoints, both sides are partitioned in the same ratio. [1] [2] The converse of the theorem is true as well. That is if a line is drawn through the midpoint of triangle side parallel to another triangle side then the line will bisect the third side of the triangle.
The midsegment of a trapezoid is one of the two bimedians (the other bimedian divides the trapezoid into equal areas). The height (or altitude) is the perpendicular distance between the bases. In the case that the two bases have different lengths ( a ≠ b ), the height of a trapezoid h can be determined by the length of its four sides using ...
In elementary geometry, it is a theorem that the median of a trapezoid is equal in length to the average of the lengths of the two bases. Here, a trapezoid is a quadrilateral with two opposite sides parallel, and its median is defined as the line segment connecting the midpoints of the two non-parallel sides of the trapezoid. The median is ...
Any non-self-crossing quadrilateral with exactly one axis of symmetry must be either an isosceles trapezoid or a kite. [5] However, if crossings are allowed, the set of symmetric quadrilaterals must be expanded to include also the crossed isosceles trapezoids, crossed quadrilaterals in which the crossed sides are of equal length and the other sides are parallel, and the antiparallelograms ...
Each side of the medial triangle is called a midsegment (or midline). In general, a midsegment of a triangle is a line segment which joins the midpoints of two sides of the triangle. It is parallel to the third side and has a length equal to half the length of the third side.
Minkowski–Hlawka theorem (geometry of numbers) Monsky's theorem (discrete geometry) Pick's theorem ; Pizza theorem ; Radon's theorem (convex sets) Separating axis theorem (convex geometry) Steinitz theorem (graph theory) Stewart's theorem (plane geometry) Supporting hyperplane theorem (convex geometry) Sylvester–Gallai theorem (plane geometry)
Given two points of interest, finding the midpoint of the line segment they determine can be accomplished by a compass and straightedge construction.The midpoint of a line segment, embedded in a plane, can be located by first constructing a lens using circular arcs of equal (and large enough) radii centered at the two endpoints, then connecting the cusps of the lens (the two points where the ...
The triangle medians and the centroid.. In geometry, a median of a triangle is a line segment joining a vertex to the midpoint of the opposite side, thus bisecting that side. . Every triangle has exactly three medians, one from each vertex, and they all intersect at the triangle's cent