Search results
Results From The WOW.Com Content Network
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
Given two different points (x 1, y 1) and (x 2, y 2), there is exactly one line that passes through them. There are several ways to write a linear equation of this line. If x 1 ≠ x 2, the slope of the line is . Thus, a point-slope form is [3]
The formula was defined by Jeff Tupper and appears as an example in his 2001 SIGGRAPH paper on reliable two-dimensional computer graphing algorithms. [1] This paper discusses methods related to the GrafEq formula-graphing program developed by Tupper. [2]
In the graph, moving one unit to the right (increasing x by 1) moves the y-value up by a: that is, (+) = +. Negative slope a indicates a decrease in y for each increase in x . For example, the linear function y = − 2 x + 4 {\displaystyle y=-2x+4} has slope a = − 2 {\displaystyle a=-2} , y -intercept point ( 0 , b ) = ( 0 , 4 ...
The solution set for the equations x − y = −1 and 3x + y = 9 is the single point (2, 3). A solution of a linear system is an assignment of values to the variables ,, …, such that each of the equations is satisfied. The set of all possible solutions is called the solution set. [5]
By the implicit function theorem, each choice defines a function; for the first one, the (maximal) domain is the interval [−2, 2] and the image is [−1, 1]; for the second one, the domain is [−2, ∞) and the image is [1, ∞); for the last one, the domain is (−∞, 2] and the image is (−∞, −1]. As the three graphs together form a ...
The graph of a function with a horizontal (y = 0), vertical (x = 0), and oblique asymptote (purple line, given by y = 2x) A curve intersecting an asymptote infinitely many times
Example: Let Y be the circle graph on vertices {1,2,3,4} with edges {1,2}, {2,3}, {3,4} and {1,4}, denoted Circ 4. Let K = {0,1} be the state space for each vertex and use the function nor 3 : K 3 → K defined by nor 3 (x,y,z) = (1 + x)(1 + y)(1 + z) with arithmetic modulo 2 for all vertex functions. Then for example the system state (0,1,0,0 ...