Search results
Results From The WOW.Com Content Network
Interchanging the vector field v and ∇ operator, we arrive at the cross product of a vector field with curl of a vector field: = () , where ∇ F is the Feynman subscript notation, which considers only the variation due to the vector field F (i.e., in this case, v is treated as being constant in space).
For a tensor field of order k > 1, the tensor field of order k is defined by the recursive relation = where is an arbitrary constant vector. A tensor field of order greater than one may be decomposed into a sum of outer products, and then the following identity may be used: = ().
The line integral of a vector field over a loop is equal to the surface integral of its curl over the enclosed surface. Stokes' theorem is a special case of the generalized Stokes theorem. [5] [6] In particular, a vector field on can be considered as a 1-form in which case its curl is its exterior derivative, a 2-form.
The classical Stokes' theorem relates the surface integral of the curl of a vector field over a surface in Euclidean three-space to the line integral of the vector field over its boundary. It is a special case of the general Stokes theorem (with n = 2 {\displaystyle n=2} ) once we identify a vector field with a 1-form using the metric on ...
Path independence of the line integral is equivalent to the vector field under the line integral being conservative. A conservative vector field is also irrotational; in three dimensions, this means that it has vanishing curl. An irrotational vector field is necessarily conservative provided that the domain is simply connected.
The curl of an order-n > 1 tensor field () is also defined using the recursive relation = ; = where c is an arbitrary constant vector and v is a vector field. Curl of a first-order tensor (vector) field
The curl is an operation which takes a vector field and produces another vector field. The curl is defined only in three dimensions, but some properties of the curl can be captured in higher dimensions with the exterior derivative .
where ⋆ is the Hodge star operator, ♭ and ♯ are the musical isomorphisms, f is a scalar field and F is a vector field. Note that the expression for curl requires ♯ to act on ⋆d(F ♭), which is a form of degree n − 2. A natural generalization of ♯ to k-forms of arbitrary degree allows this expression to make sense for any n.